

CS 450

Relational Algebra 3

Prof. Jessica Lin

2

More Examples on Sailors
Relations

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

3

Find names of sailors who’ve reserved boat
#103

•  Solution 1: Find those who reserved boat 103, join
with Sailors to find the names, and project out the
names

•  Solution 2: Join Reserves and Sailors to get all
information, and find those who reserved boat 103.
Project out the names.

)))Re(((103 Sailorsservesbidsname
=

σπ

 π σsname bid
serves Sailors((Re))

=103

Which one is more efficient?

4

Find names of sailors who’ve reserved a
red boat

•  Information about boat color only available
in Boats; so need an extra join:
π σsname color red

Boats serves Sailors((' ') Re)
=

π π π σsname sid bid color red
Boats s Sailors(((' ') Re))

=

  A query optimizer can find this given the first solution!

•  A more efficient solution: Find the bids of

red boats first before doing the join.

5

Find sailors who’ve reserved a red or a green
boat

•  Can identify all red or green boats, then find sailors
who’ve reserved one of these boats:

6

Find sailors who’ve reserved a red or a green
boat

Result=π sname(Tempboats Reserves Sailors)

•  Can identify all red or green boats, then find sailors
who’ve reserved one of these boats:

)('''' Boats
greencolorredcolor

Tempboats
=∨=

=σ

7

Find sailors who’ve reserved a red or a green
boat

• What happens if “or” is replaced by “and”?

)('''' Boats
greencolorredcolor

Tempboats
=∨=

=σ

)Re(Re SailorsservesTempboatssnamesult π=

€

Tempboats=σcolor='red ' (Boats)

€

σcolor='green' (Boats)

•  Can identify all red or green boats, then find sailors
who’ve reserved one of these boats:

•  Can also define Tempboats using union:

8

Find sailors who’ve reserved a red and a
green boat

•  Previous first approach won’t work! (Why
not?) Must use intersection.

)Re))(''((servesBoats
redcolorsid

Tempred
=

= σπ

))((Re SailorsTempgreenTempredsnamesult ∩=π

)Re))(''((servesBoats
greencolorsid

Tempgreen
=

= σπ

9

Consider yet another query
•  Find the sailor(s) who reserved all the red

boats.
R1 B

sid bid day
22 101 10/10/96
22 103 10/11/96
56 102 11/12/96

bid color
101 Red
102 Green
103 Red

10

Start an attempt
•  Who reserved what boat:

•  All the red boats:

==)1(,1 RbidsidS π

=
=

=))((2 B
redcolorbid

S σπ

sid bid
22 101
22 103
56 102

bid
101
103

Now what?

•  We will solve the problem the “hard” way, and
then will introduce an operator specifically for
this kind of problem.

•  Idea: Compute the sids of sailors who didn’t
reserve all red boats.
1.  Find all possible reservations that could be made on red boats.
2.  Find actual reservations on red boats
3.  Find the possible reservations on red boats that were not

actually made (#1 – #2) (set difference)
4.  Project out the sids from 3 – these are the sailors who didn’t

have reservation on some red boat(s).

Find the sailor(s) who reserved all the red boats.

•  Idea: Compute the sids of sailors who didn’t reserve all
red boats (then find the difference between this set and
set of all sailors).
1.  Find all possible reservations that could be made on red boats.
 AllPossibleRes = πsid (R1) × πbid σcolor=“red” (B)
2. Find actual reservations on red boats
 AllRedRes = πsid,bid (R1) πbid σcolor=“red” (B)
3. 4. Find the possible reservations on red boats that were not actually made,
and project out the sids.

 πsid (AllPossibleRes – AllRedRes)
5.  Find sids that are not in the result from above (sailors such that there is no

red boat that’s not reserved by him/her)
 πsid (R1) – πsid (AllPossibleRes – AllRedRes)

Find the sailor(s) who reserved all the red boats.

13

Division Operation
•  Suited to queries that include the phrase “for all”, e.g. Find sailors who have

reserved all red boats.
•  Produce the tuples in one relation, r, that match all tuples in another relation, s
•  Let S1 have 2 fields, x and y; S2 have only field y:

–  S1/S2 =

–  i.e., S1/S2 contains all x tuples (sailors) such that for every y tuple (redboat) in S2, there is an
xy tuple in S1 (i.e, x reserved y).

•  In general, x and y can be any lists of fields; y is the list of fields in S2, and x∪y is
the list of fields of S1.

•  Let r and s be relations on schemas R and S respectively where
–  R = (A1, …, Am, B1, …, Bn),
–  S = (B1, …, Bn),
The result of r / s is a relation on schema
R – S = (A1, …, Am)

r / s"

€

x |∀ y in S2 (∃ x,y in S1)$
%
&

' &

(
)
&

* &

14

Division (cont’d)

15

Division Operation – Example
Relations r, s:"

r / s:"

A!

B!

α!
β!

1!
2!

A! B!

α!
α!
α!
β!
γ!
δ!
δ!
δ!
∈!
∈!
β!

1!
2!
3!
1!
1!
1!
3!
4!
6!
1!
2!
r!

s!

α occurs in the presence of both 1 and 2, so it is returned.
β occurs in the presence of both 1 and 2, so it is returned.
γ  does not occur in the presence of both 1 and 2, so is ignored.
...

16

Another Division Example

A! B!

α!
α!
α!
β!
β!
γ!
γ!
γ!

a"
a"
a"
a"
a"
a"
a"
a!

C! D!

α!
γ!
γ!
γ!
γ!
γ!
γ!
β!

a"
a!
b!
a"
b"
a!
b!
b!

E!

1!
1!
1!
1!
3!
1!
1!
1!

Relations r, s:"

r /s:"

D!

a!
b!

E!

1!
1!

A! B!

α!
γ!

a"
a!

C!

γ!
γ!r!

s!

<α, a ,γ > occurs in the presence of both <a,1> and <b,1>, so it is returned.
< γ, a ,γ > occurs in the presence of both <a,1> and <b,1>, so it is returned.
<β, a ,γ > does not occur in the presence of both <a,1> and <b,1>, so it is ignored.

17

More Division Examples: A/B
sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

18

Find the sailor(s) who reserved
ALL red boats

•  who reserved what boat:

•  All the red boats:

sid bid
22 101
22 103
58 102

==)1(,1 RbidsidS π

=
=

=))((2 B
redcolorbid

S σπ
bid
101
103

=> S1/S2

19

Find the names of sailors who’ve reserved all
boats

•  Uses division; schemas of the input relations to
“divide” must be carefully chosen:

))((/))(Re,(Tempsids Boats
bid

serves
bidsid

ππ=

)(Result SailorsTempsidssname π=

•  SALES(supId, prodId);
•  PRODUCTS(prodId);
•  SALES/PRODUCTS = ?

20

Expressing A/B Using Basic Operators
•  Division is not essential op; just a useful shorthand.

–  (Also true of joins, but joins are so common that
systems implement joins specially. Division is NOT
implemented in SQL).

•  Idea: For SALES/PRODUCTS, compute the IDs
of suppliers that don’t supply all products.

))Pr)(((SalesoductsSalessidsidA −×= ππ

The answer is πsid(Sales) - A

22

Additional Operator: Outer Join
•  An extension of the join operation that avoids loss of

information.
•  Computes the join and then adds tuples from one

relation that does not match tuples in the other
relation to the result of the join.

•  Uses null values:
–  null signifies that the value is unknown or does not exist
–  All comparisons involving null are (roughly speaking) false

by definition.
•  Will study precise meaning of comparisons with nulls later

23

Outer Join – Example

Relation loan

Relation borrower customer-name! loan-number!
Simpson"
Wiggum"
Flanders"

L-170!
L-230!
L-155"

loan-number! amount!
L-170!
L-230!
L-260"

3000"
4000"
1700"

branch-name!
Springfield"
Shelbyville "
Dublin

24

Outer Join – Example

•  Inner Join

loan Borrower

loan borrower
•  Left Outer Join

loan-number! amount!
L-170"
L-230"

3000"
4000"

customer-name!
Simpson"
Wiggum"

branch-name!
Springfield"
Shelbyville"

loan-number! amount!
L-170"
L-230"
L-260"

3000"
4000"
1700"

customer-name!
Simpson"
Wiggum"
null!

branch-name!
Springfield"
Shelbyville"
Dublin"

customer-name! loan-number!
Simpson"
Wiggum"
Flanders"

L-170!
L-230!
L-155"

loan-number! amount!
L-170!
L-230!
L-260"

3000"
4000"
1700"

branch-name!
Springfield"
Shelbyville "
Dublin

25

Outer Join – Example

Right Outer Join

loan borrower

loan-number! amount!
L-170"
L-230"
L-155"

3000"
4000"
null!

customer-name!
Simpson"
Wiggum"
Flanders"

loan-number! amount!
L-170"
L-230"
L-260"
L-155"

3000"
4000"
1700"
null!

customer-name!
Simpson"
Wiggum"
null"
Flanders"

loan borrower

Full Outer Join

branch-name!
Springfield"
Shelbyville"
null!

branch-name!
Springfield"
Shelbyville"
Dublin"
null!

customer-name! loan-number!
Simpson"
Wiggum"
Flanders"

L-170!
L-230!
L-155"

loan-number! amount!
L-170!
L-230!
L-260"

3000"
4000"
1700"

branch-name!
Springfield"
Shelbyville "
Dublin

26

Null Values
•  It is possible for tuples to have a null value, denoted by null, for

some of their attributes
•  null signifies an unknown value or that a value does not exist.
•  The result of any arithmetic expression involving null is null.
•  Aggregate functions simply ignore null values

–  Is an arbitrary decision. Could have returned null as result instead.
–  We follow the semantics of SQL in its handling of null values

•  For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be the same
–  Alternative: assume each null is different from each other
–  Both are arbitrary decisions, so we simply follow SQL

27

Null Values
•  Comparisons with null values return the special truth value

unknown
•  Three-valued logic using the truth value unknown:

–  OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

–  AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

–  NOT: (not unknown) = unknown
–  In SQL “P is unknown” evaluates to true if predicate P

evaluates to unknown
•  Result of select predicate is treated as false if it evaluates

to unknown

28

Summary
•  The relational model has rigorously defined query

languages that are simple and powerful.
•  Relational algebra is more operational; useful as

internal representation for query evaluation plans.
•  Several ways of expressing a given query; a query

optimizer should choose the most efficient
version.

•  Operations covered: 5 basic operations (selection,
projection, union, set difference, cross product),
rename, joins (natural join, equi-join, conditional
join, outer joins), division

