# Schema Refinement \& Normalization Theory 

Normal Forms 2

## BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
- Example: schema CSZ (city, street_name, zip_code) with FDs: $\mathrm{CS} \rightarrow \mathrm{Z}, \mathrm{Z} \rightarrow \mathrm{C}$

$$
\begin{aligned}
& \text { (city, street_name) } \rightarrow \text { zip_code } \\
& \text { zip_code } \rightarrow \text { city }
\end{aligned}
$$

- Can't decompose while preserving $\mathrm{CS} \rightarrow \mathrm{Z}$, but CSZ is not in BCNF.


## Example Regarding Dependency Preservation

- $R=(A, B, C)$
$F=\{A \rightarrow B, B \rightarrow C)$
- Can be decomposed in two different ways
- $R_{1}=(A, B), \quad R_{2}=(B, C)$
- Lossless-join decomposition:

$$
R_{1} \cap R_{2}=\{B\} \text { and } B \rightarrow B C
$$

- Dependency preserving
- $R_{1}=(A, B), R_{2}=(A, C)$
- Lossless-join decomposition:

$$
R_{1} \cap R_{2}=\{A\} \text { and } A \rightarrow \mathrm{~A} B
$$

- Not dependency preserving (cannot check $B \rightarrow C$ without computing $R_{1} \bowtie R_{2}$ )


## Dependency Preserving Decomposition

- Consider CSJDPQV, C is key, JP $\rightarrow \mathrm{C}$ and $\mathrm{SD} \rightarrow \mathrm{P}$.
- BCNF decomposition: CSJDQV and SDP
- Problem: Checking JP $\rightarrow \mathrm{C}$ requires a join!
- Dependency preserving decomposition (Intuitive):
- If R is decomposed into $\mathrm{X}, \mathrm{Y}$ and Z , and we enforce the FDs that hold on X , on Y and on Z , then all FDs that were given to hold on R must also hold. (Avoids Problem (3))


## What FD on a decomposition?

- Projection (or restriction) of set of FDs F: If R is decomposed into $\mathrm{X}, \ldots$ the projection (also referred to as restriction) of F onto X (denoted $\mathrm{F}_{\mathrm{X}}$ ) is the set of FDs $\mathrm{U} \rightarrow \mathrm{V}$ in $\mathrm{F}^{+}$ (closure of $F$ ) such that $\mathrm{U}, \mathrm{V}$ are in X .


## Dependency Preserving Decompositions

- Decomposition of R into X and Y is dependency preserving if $\left(F_{X} \cup F_{Y}\right)^{+}=F^{+}$
- i.e., if we consider only dependencies in the closure $\mathrm{F}^{+}$that can be checked in X without considering Y , and in Y without considering X , these imply all dependencies in $\mathrm{F}^{+}$.
- Important to consider $\mathrm{F}^{+}$, not F , in this definition:
$-\mathrm{ABC}, \mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{A}$, decomposed into AB and BC .
- Is this dependency preserving? Is $\mathrm{C} \rightarrow \mathrm{A}$ preserved?????
- Dependency preserving does not imply lossless join:
- $\mathrm{ABC}, \mathrm{A} \rightarrow \mathrm{B}$, decomposed into AB and BC .
- And vice-versa!
- Expensive since we have to compute $F^{+}$and $\left(F_{1} \cup F_{2} \cup \ldots\right.$ $\left.\cup F_{\mathrm{n}}\right)^{+}$


## (Efficient) Testing for Dependency Preservation

- To check if a dependency $\mathrm{X} \rightarrow \mathrm{Y}$ is preserved in a decomposition of $R$ into $R_{1}, R_{2}, \ldots, R_{\mathrm{n}}$ we apply the following test (with attribute closure done with respect to $F$ )
- result $=\mathrm{X}$
while (changes to result) do
for each $R_{i}$ in the decomposition

$$
t=\left(\text { result } \cap R_{i}\right)^{+} \cap R_{i}
$$

$$
\text { result }=\text { result } \cup t
$$

- If result contains all attributes in Y , then the functional dependency $\mathrm{X} \rightarrow \mathrm{Y}$ is preserved.
- Apply the test on all dependencies in $F$ to check if a decomposition is dependency preserving
- This procedure takes polynomial time.
- $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}), \mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{A}\}$, decomposed into AB and BC .
- The only FD we need to check is $\mathrm{C} \rightarrow \mathrm{A}$.
- Result = C
- Check AB:

$$
\begin{aligned}
& \mathrm{T}=(\text { Result } \cap \mathrm{AB})^{+} \cap \mathrm{AB} \\
&=(\mathrm{C} \cap \mathrm{AB})+\cap \mathrm{AB}=\{ \} \\
& \text { Result }=\mathrm{C}
\end{aligned}
$$

- Check BC:

$$
\begin{aligned}
& \mathrm{T}=(\text { Result } \cap \mathrm{BC})^{+} \cap \mathrm{BC} \\
&=(\mathrm{C} \cap \mathrm{BC})+\cap \mathrm{AB}=\mathrm{C}+\cap \mathrm{BC}=\mathrm{ABC} \cap \mathrm{BC}=\mathrm{BC} \\
& \text { Result }=\mathrm{BC} \cup \mathrm{C}=\mathrm{BC}
\end{aligned}
$$

- Check AB again

$$
\begin{aligned}
& \mathrm{T}=(\text { Result } \cap \mathrm{AB})^{+} \cap \mathrm{AB} \\
&=(\mathrm{BC} \cap \mathrm{AB})+\cap \mathrm{AB}=(\mathrm{BC})+\cap \mathrm{AB}=\mathrm{ABC} \cap \mathrm{AB}=\mathrm{AB} \\
& \text { Result }=\mathrm{BC} \cup \mathrm{AB}=\mathrm{ABC}
\end{aligned}
$$

(Result contains A, so dependency preserving!)

## Another example

- Assume CSJDPQV is decomposed into SDP, JS, CJDQV
It is not dependency preserving
w.r.t. the FDs: JP $\rightarrow \mathrm{C}, \mathrm{SD} \rightarrow \mathrm{P}$ and $\mathrm{J} \rightarrow \mathrm{S}$.
- However, it is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
- JPC tuples stored only for checking FD!


## Summary of BCNF

- If a relation is in BCNF , it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
- the decomposition is lossless
- it may not be possible to preserve dependencies.


## Next: Third Normal Form

- There are some situations where
- BCNF is not dependency preserving, and
- efficient checking for FD violation on updates is important
- Solution: define a weaker normal form, called Third Normal Form (3NF)
- Allows some redundancy (with resultant problems; we will see examples later)
- But functional dependencies can be checked on individual relations without computing a join.
- There is always a lossless-join, dependency-preserving decomposition into 3NF.


## Third Normal Form (3NF)

- If R is in BCNF, obviously in 3NF.
- If R is in 3 NF , some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no "good" decomposition, or performance considerations).
- Lossless-join, dependency-preserving decomposition of $R$ into a collection of $3 N F$ relations always possible.


## 3NF

- Relation R with $\mathrm{FDs} F$ is in 3NF if, for each FD $\mathrm{X} \rightarrow \mathrm{A}(\mathrm{X} \subseteq \mathrm{R}$ and $\mathrm{A} \subseteq \mathrm{R})$ in $F$, one of the following statements is true:
$-\mathrm{A} \subseteq \mathrm{X}$ (trivial FD), or
-X is a superkey, or
$=\begin{aligned} & \text { If one of these two is } \\ & \text { satisfied for ALL FDs, then } \\ & \mathrm{R} \text { is in BCNF }\end{aligned}$
- (A -X ) is part of some candidate key for R

Not just superkey! (why not?)

## What Does 3NF Achieve?

- If $3 N F$ is violated by $X \rightarrow A$, one of the following holds:
- $X$ is a subset of some key K (partial redundancy)
- We store (X, A) pairs redundantly.
- X is not a proper subset of any key.
- There is a chain of FDs $\mathrm{K} \rightarrow \mathrm{X} \rightarrow \mathrm{A}$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.
- But: even if a relation is in 3NF, these problems could arise.
- e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD. $F D=\{S \rightarrow C, C \rightarrow S\} . R$ is in $3 N F$, but for each reservation of sailor $S$, same ( $\mathrm{S}, \mathrm{C}$ ) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.


## Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
- If $\mathrm{X} \rightarrow \mathrm{Y}$ is not preserved, add relation XY.
- Problem is that XY may violate 3NF!
- Refinement: Instead of the given set of FDs F, use a canonical cover or a minimal cover for $F$.


## Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
- Closure of $\mathrm{F}=$ closure of G .
- Right hand side of each FD in G is a single attribute.
- If we modify G by deleting an FD or by deleting attributes from an FD in G , the closure changes.
- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F .

The textbook uses canonical cover, which does not have the second requirement. Instead, canonical cover requires that each left-hand-side of dependencies is unique.

## Obtaining Minimal Cover

- Step 1: Put the FDs in a standard form (i.e. right-hand side should contain only single attribute)
- Step 2: Minimize the left side of each FD by eliminating any extraneous attributes.
- Step 3: Delete redundant FDs
- Find minimal cover for $\mathrm{F}=\{\mathrm{ABH} \rightarrow \mathrm{CK}$, $\mathrm{A} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}, \mathrm{BGH} \rightarrow \mathrm{L}, \mathrm{L} \rightarrow \mathrm{AD}, \mathrm{E} \rightarrow$ $\mathrm{L}, \mathrm{BH} \rightarrow \mathrm{E}\}$
- Step 1: Make RHS of each FD into a single attribute:
$\mathrm{F}=\{\mathrm{ABH} \rightarrow \mathrm{C}, \mathrm{ABH} \rightarrow \mathrm{K}, \mathrm{A} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}$,
$\mathrm{BGH} \rightarrow \mathrm{L}, \mathrm{L} \rightarrow \mathrm{A}, \mathrm{L} \rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{L}, \mathrm{BH} \rightarrow \mathrm{E}\}$
- $\mathrm{F}=\{\mathrm{ABH} \rightarrow \mathrm{C}, \mathrm{ABH} \rightarrow \mathrm{K}, \mathrm{A} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}, \mathrm{BGH} \rightarrow \mathrm{L}, \mathrm{L} \rightarrow \mathrm{A}, \mathrm{L}$ $\rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{L}, \mathrm{BH} \rightarrow \mathrm{E}\}$
- Step 2: Eliminate extraneous (redundant) attributes from LHS, e.g. Can an attribute be deleted from $\mathrm{ABH} \rightarrow \mathrm{C}$ ?
- Compute (AB)+, (BH)+, (AH)+ and see if any of them contains C. (Why?)
$-(\mathrm{AB})^{+}=\mathrm{ABD},(\mathrm{BH})^{+}=\mathrm{ABCDEHKL},(\mathrm{AH})^{+}=\mathrm{ADH}$. Since $\mathrm{C} \in(\mathrm{BH})^{+}, \mathrm{BH}$ $\rightarrow \mathrm{C}$ is entailed by F . So A is redundant in $\mathrm{ABH} \rightarrow \mathrm{C}$. Similarly, A is also redundant in $\mathrm{ABH} \rightarrow \mathrm{K}$. Check further to see if B or H is redundant as well.
- Similarly, for $\mathrm{BGH} \rightarrow \mathrm{L}, \mathrm{G}$ is redundant since $\mathrm{L} \in(\mathrm{BH})^{+}$.
$-\mathrm{F}=\{\mathrm{BH} \rightarrow \mathrm{C}, \mathrm{BH} \rightarrow \mathrm{K}, \mathrm{A} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}, \mathrm{BH} \rightarrow \mathrm{L}, \mathrm{L} \rightarrow \mathrm{A}, \mathrm{L} \rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{L}$, $\mathrm{BH} \rightarrow \mathrm{E}\}$
- $\mathrm{F}=\{\mathrm{BH} \rightarrow \mathrm{C}, \mathrm{BH} \rightarrow \mathrm{K}, \mathrm{A} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}, \mathrm{BH} \rightarrow \mathrm{L}, \mathrm{L} \rightarrow$ $\mathrm{A}, \mathrm{L} \rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{L}, \mathrm{BH} \rightarrow \mathrm{E}\}$
- Step 3: Delete redundant FDs from F.
- If $\mathrm{F}-\{f\}$ infers $f$, then $f$ is redundant, i.e. if $f$ is $\mathrm{X} \rightarrow \mathrm{A}$, then check if $\mathrm{X}+$ using $\mathrm{F}-f$ still contains A . If it does, then it means $\mathrm{X} \rightarrow \mathrm{A}$ can be inferred by other FDs.
- e.g. For $\mathrm{BH} \rightarrow \mathrm{L},(\mathrm{BH})+($ not using BH $\rightarrow \mathrm{L})=$ ACDEKL, which contains L . This means BH $\rightarrow \mathrm{L}$ can be inferred by other FDs, so it's a redundant FD.
- In fact, $\mathrm{BH} \rightarrow \mathrm{L}$ can be inferred by $\mathrm{BH} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{L}$.
- Check other FDs using the same algorithm.
- Note: the order of Step 2 and Step 3 should not be exchanged.


## What to do with Minimal Cover?

- After obtaining the minimal cover, for each FD $X \rightarrow$ $A$ in the minimal cover that is not preserved, create a table consisting of XA (so we can check dependency in this new table, i.e. dependency is preserved).
- Why is this new table guaranteed to be in 3NF (whereas if we created the new table from $F$, it might not?)
- Since $\mathrm{X} \rightarrow \mathrm{A}$ is in the minimal cover, $\mathrm{Y} \rightarrow \mathrm{A}$ does not hold for any Y that is a strict subset of X.
- So X is a key for XA (satisfies condition \#2)
- If any other dependencies hold over XA, the right side can involve only attributes in X because A is a single attribute (satisfies condition \#3).


## Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3 NF such that:
- the decomposition is lossless
- the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
- the decomposition is lossless
- it may not be possible to preserve dependencies.


## Normalization Review

- Identify all FD's in $\mathrm{F}^{+}$
- Identify candidate keys
- Identify (strongest, or specific) normal forms
- BCNF, 3NF
- Schema decomposition
- When to decompose
- How to check if a decomposition is lossless-join and/or dependency preserving
- Use projection of $\mathrm{F}^{+}$to check for dependency preservation
- Decompose into:
- Lossless-join
- Dependency preserving
- Use minimal cover


## Normalization Theory Practice Questions

## Example

| $A$ | $B$ | $C$ |
| :--- | :--- | :--- |
| 1 | 1 | 2 |
| 1 | 1 | 3 |
| 2 | 2 | 3 |
| 2 | 2 | 2 |


| FDs with A as <br> the left side: | Satisfied by the <br> relation? |
| :--- | :--- |
| $\mathrm{A} \rightarrow \mathrm{A}$ | Yes (trivial FD) |
| $\mathrm{A} \rightarrow \mathrm{B}$ | Yes |
| $\mathrm{A} \rightarrow \mathrm{C}$ | No: tuples $1 \& 2$ |
| $\mathrm{AB} \rightarrow \mathrm{A}$ | Yes (trivial FD) |
| $\mathrm{AC} \rightarrow \mathrm{B}$ | Yes |

## Example

Let $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{B} \rightarrow \mathrm{C}\}$. Is $\mathrm{C} \rightarrow \mathrm{AB}$ in $\mathrm{F}^{+}$?
Answer: No. Either of the following 2 reasons is ok:

Reason 1) $\mathrm{C}^{+}=\mathrm{C}$, and does not include AB .
Reason 2) We can find a relation instance such that it satisfies $F$ but does not satisfy $\mathrm{C} \rightarrow \mathrm{AB}$.

| $A$ | $B$ | $C$ |
| :--- | :--- | :--- |
| 1 | 1 | 2 |
| 2 | 1 | 2 |

## List all the non-trivial FDs in $\mathrm{F}^{+}$

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute $\mathrm{F}^{+}$ (with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ).

|  | A | B | C | AB | AC | BC | ABC | Attribute closure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\sqrt{ }$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\mathrm{A}^{+}=\mathrm{ABC}$ |
| B |  | $\checkmark$ | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  | $\mathrm{B}^{+}=\mathrm{BC}$ |
| C |  |  | $\sqrt{ }$ |  |  |  |  | $\mathrm{C}^{+}=\mathrm{C}$ |
| AB | $\sqrt{ }$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\mathrm{AB}^{+}=\mathrm{ABC}$ |
| AC | $\sqrt{ }$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\mathrm{AC}^{+}=\mathrm{ABC}$ |
| BC |  | $\checkmark$ | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  | $\mathrm{BC}^{+}=\mathrm{BC}$ |
| ABC | $\sqrt{ }$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\mathrm{ABC}^{+}=\mathrm{ABC}$ |

## Example

- Given $F=\{A \rightarrow B, B \rightarrow C\}$. Find a relation that satisfies F:

| A | B | C |
| :--- | :--- | :--- |
| 1 | 1 | 2 |
| 2 | 1 | 2 |

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Find a relation that satisfies $F$ but does not satisfy $B \rightarrow A$. The above example suffices.
- Can you find an instance that satisfies F but not $\mathrm{A} \rightarrow \mathrm{C}$ ? No. Because $\mathrm{A} \rightarrow \mathrm{C}$ is in $\mathrm{F}^{+}$


## Examples

R(A, B, C, D, E),
$F=\{A \rightarrow B, C \rightarrow D\}$
Candidate key: ACE. How do we know?
Intuitively,
-A is not determined by any other attributes (like E),
and A has to be in a candidate key (because a candidate key has to determine all the attributes).

- Now if A is in a candidate key, B cannot be in the same candidate key, since we can drop $B$ from the candidate without losing the property of being a "key".
- So B cannot be in a candidate key
- Same reasoning apply to others attributes.


## Example

$\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$,
$F=\{A \rightarrow B, C \rightarrow D\}$ [Same as previous]
Which normal form?
Not in BCNF. This is the case where all attributes in the FDs appear in R. We consider A, and C to see if either is a superkey of not. Obviously, neither A nor C is a superkey, and hence R is not in BCNF. More precisely, we have $A \rightarrow B$ is in $\mathrm{F}^{+}$and non-trivial, but $A$ is not a superkey of $R$.

## Example

$\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$
$F=\{A \rightarrow B, C \rightarrow D\}$ [Same as previous]
Which normal form?
We already know that it's not in BCNF.
Not in 3NF either. We have $\mathrm{A} \rightarrow \mathrm{B}$ is in $\mathrm{F}^{+}$and non-trivial, but A is not a superkey of R. Furthermore, B is not in any candidate key (since the only candidate key is ACE).

## Example

- $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{F}), \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{E}, \mathrm{B} \rightarrow \mathrm{F}\}$.
- Candidate key? AB
- BCNF? No, because of $B \rightarrow F$ ( $B$ is not a superkey).
- 3NF? No, because of $B \rightarrow F$ ( $F$ is not part of a candidate key).


## Example

- $\mathrm{R}(\mathrm{D}, \mathrm{C}, \mathrm{H}, \mathrm{G}), \mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{I}, \mathrm{I} \rightarrow \mathrm{A}\}$
- Candidate key? DCHG
- BCNF? Yes
- 3NF? Yes


## Example

- R(A, B, C, D, E, G, H)
$\mathrm{F}=\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AC} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{BC} \rightarrow \mathrm{A}, \mathrm{E} \rightarrow \mathrm{G}\}$
- Candidate keys?
- H has to be in all candidate keys
- E has to be in all candidate keys
- G cannot be in any candidate key (since E is in all candidate keys already).
- Since $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AC} \rightarrow \mathrm{B}$ and $\mathrm{BC} \rightarrow \mathrm{A}$, we know no candidate key can have ABC together.
- AEH, BEH, CEH are not superkeys.
- Try ABEH, ACEH, BCEH. They are all superkeys. And we know they are all candidate keys (since above properties)
- These are the only candidate keys: (1) each candidate key either contains A , or B , or C since no attributes other than $\mathrm{A}, \mathrm{B}, \mathrm{C}$ determine $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and (2) if a candidate key contains A, then it must contain either B, or C, and so on.


## Example

- Same as previous

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{H}) \\
& \mathrm{F}=\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AC} \rightarrow \mathrm{~B}, \mathrm{~B} \rightarrow \mathrm{D}, \\
& \mathrm{BC} \rightarrow \mathrm{~A}, \mathrm{E} \rightarrow \mathrm{G}\}
\end{aligned}
$$

- Not in BCNF, not in 3NF
- Decomposition:



## Example

- R(A, B, C, D, E, G, H) $\mathrm{F}=\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AC} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{BC} \rightarrow \mathrm{A}, \mathrm{E} \rightarrow$ G\}
- Decomposition: BD, ABC, EG, ABEH
- Why good decomposition?
- They are all in BCNF
- Lossless-join decomposition
- How do you know this if you don't know how R was decomposed?
- All dependencies are preserved.


## Example

- R(A, B, D, E) decomposed into R1(A, B, D), R2(A, B, E)
- $\mathrm{F}=\{\mathrm{AB} \rightarrow \mathrm{DE}\}$
- It is a dependency preserving decomposition!
$-\mathrm{AB} \rightarrow \mathrm{D}$ can be checked in R1
$-\mathrm{AB} \rightarrow \mathrm{E}$ can be checked in R 2
$-\{\mathrm{AB} \rightarrow \mathrm{DE}\}$ is equivalent to $\{\mathrm{AB} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathrm{E}\}$

