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BCNF and Dependency Preservation 

•  In general, there may not be a dependency 
preserving decomposition into BCNF. 

•  Example: schema CSZ (city, street_name, 
zip_code) with FDs: CS → Z,  Z → C 

 (city, street_name) → zip_code 
 zip_code → city 

•  Can’t decompose while preserving CS → Z, 
but CSZ is not in BCNF. 
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Example Regarding Dependency 
Preservation 

•  R = (A, B, C) 
F = {A → B, B → C) 
–  Can be decomposed in two different ways 

•  R1 = (A, B),   R2 = (B, C) 
–  Lossless-join decomposition: 

   R1  ∩ R2 = {B} and B → BC 
–  Dependency preserving 

•  R1 = (A, B),   R2 = (A, C) 
–  Lossless-join decomposition: 

   R1  ∩ R2 = {A} and A → AB 
–  Not dependency preserving  

(cannot check B → C without computing R1     R2) 



4 

Dependency Preserving Decomposition 
•  Consider CSJDPQV,  C is key,  JP → C  and  

SD → P. 
–  BCNF decomposition:   CSJDQV and SDP 
–  Problem:  Checking  JP → C  requires a join! 

•  Dependency preserving decomposition 
(Intuitive): 
–  If R is decomposed into X, Y and Z, and we 

enforce the FDs that hold on X, on Y and on Z, 
then all FDs that were given to hold on R must 
also hold.  (Avoids Problem (3)) 
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What FD on a decomposition? 
•  Projection (or restriction) of set of FDs F: If 

R is decomposed into X, ... the projection 
(also referred to as restriction) of F onto X  
(denoted FX ) is the set of FDs U → V in F+ 
(closure of F ) such that U, V are in X.  
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Dependency Preserving Decompositions 
•  Decomposition of R into X and Y is dependency preserving 

if  (FX  ∪   FY ) +  =  F + 

–  i.e., if we consider only dependencies in the closure F + that can be 
checked in X without considering Y, and in Y without considering 
X,  these imply all dependencies in F +. 

•  Important to consider F +, not F, in this definition: 
–  ABC,  A → B,  B → C,  C → A, decomposed into AB and BC. 
–  Is this dependency preserving?  Is  C → A  preserved????? 

•  Dependency preserving does not imply lossless join: 
–  ABC,  A → B,  decomposed into AB and BC. 

•  And vice-versa! 
•  Expensive since we have to compute F+ and (F1 ∪ F2 ∪ … 
∪ Fn)+  



(Efficient) Testing for Dependency 
Preservation 

•  To check if a dependency X → Y is preserved in a 
decomposition of R into R1, R2, …, Rn we apply the following 
test (with attribute closure done with respect to F) 
–  result = X 

while (changes to result) do 
 for each Ri in the decomposition 
  t = (result ∩ Ri)+ ∩ Ri 
  result  =  result  ∪ t 

–  If result contains all attributes in Y, then the functional dependency  
X → Y is preserved. 

•  Apply the test on all dependencies in F  to check if a 
decomposition is dependency preserving 

•  This procedure takes polynomial time. 



•  R(A, B, C),  F = {A → B,  B → C,  C → A}, decomposed 
into AB and BC. 

•  The only FD we need to check is C → A. 
•  Result = C 
•  Check AB: 

 
•  Check BC: 

•  Check AB again 
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T = (Result ∩ AB)+ ∩ AB 
   = (C ∩ AB)+ ∩ AB = {} 
Result = C 

 

T = (Result ∩ BC)+ ∩ BC 
   = (C ∩ BC)+ ∩ AB = C+ ∩ BC = ABC ∩ BC = BC 
Result = BC ∪ C = BC  

 

T = (Result ∩ AB)+ ∩ AB 
   = (BC ∩ AB)+ ∩ AB = (BC)+ ∩ AB = ABC ∩ AB = AB 
Result = BC ∪ AB = ABC    
(Result contains A, so dependency preserving!) 
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Another example 
•  Assume CSJDPQV is decomposed into  

                        SDP, JS, CJDQV 
It is not dependency preserving  
w.r.t. the FDs: JP → C,  SD → P  and  J → S. 

•  However, it is a lossless join decomposition. 
•  In this case, adding JPC to the collection of relations gives 

us a dependency preserving decomposition. 
•  JPC tuples stored only for checking FD!  
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Summary of BCNF 
•  If a relation is in BCNF, it is free of redundancies that can 

be detected using FDs.  Thus, trying to ensure that all 
relations are in BCNF is a good heuristic. 

•  If a relation is not in BCNF, we can try to decompose it 
into a collection of BCNF relations. 
–  It is always possible to decompose a relation into a set of 

relations that are in BCNF such that: 
•  the decomposition is lossless 
•  it may not be possible to preserve dependencies. 
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Next: Third Normal Form 
•  There are some situations where  

–  BCNF is not dependency preserving, and  
–  efficient checking for FD violation on updates is 

important 
•  Solution: define a weaker normal form, called 

Third Normal Form (3NF) 
–  Allows some redundancy (with resultant problems; we 

will see examples later) 
–  But functional dependencies can be checked on 

individual relations without computing a join. 
–  There is always a lossless-join, dependency-preserving 

decomposition into 3NF. 
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Third Normal Form  (3NF) 

•  If R is in BCNF, obviously in 3NF. 
•  If R is in 3NF, some redundancy is possible.  

It is a compromise, used when BCNF not 
achievable (e.g., no “good” decomposition, 
or performance considerations). 
–  Lossless-join, dependency-preserving 

decomposition of R into a collection of 3NF 
relations always possible. 



3NF 

•  Relation R with FDs F is in 3NF if, for each FD  
X → A (X ⊆  R and A ⊆  R) in F, one of the 
following statements is true:  
–  A ⊆  X (trivial FD), or 
–  X is a superkey, or  
–  (A – X) is part of some candidate key for R 
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If one of these two is 
satisfied for ALL FDs, then 
R is in BCNF 

Not just superkey! (why not?) 
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What Does 3NF Achieve? 
•  If 3NF is violated by X→A, one of the following holds: 

–  X is a subset of some key K (partial redundancy) 
•  We store (X, A) pairs redundantly. 

–  X is not a proper subset of any key. 
•  There is a chain of FDs  K → X → A, which means that we cannot 

associate an X value with a K value unless we also associate an A value 
with an X value. 

•  But: even if a relation is in 3NF, these problems could arise. 
–  e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD.  

FD = {S →C,   C →S}. R is in 3NF, but for each reservation of sailor S,  
same (S, C) pair is stored. 

•  Thus, 3NF is indeed a compromise relative to BCNF. 
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Decomposition into 3NF 
•  Obviously, the algorithm for lossless join decomp 

into BCNF can be used to obtain a lossless join 
decomp into 3NF (typically, can stop earlier). 

•  To ensure dependency preservation, one idea: 
–  If  X → Y  is not preserved,  add relation XY. 
–  Problem is that XY may violate 3NF!  

•  Refinement:  Instead of the given set of FDs F, 
use a canonical cover or a minimal cover for F. 



Minimal Cover for a Set of FDs 
•  Minimal cover  G for a set of FDs F: 

–  Closure of F = closure of G. 
–  Right hand side of each FD in G is a single attribute. 
–  If we modify G by deleting an FD or by deleting 

attributes from an FD in G, the closure changes. 
•  Intuitively, every FD in G is needed, and “as small 

as possible” in order to get the same closure as F. 

The textbook uses canonical cover, which does not have the second requirement. 
Instead, canonical cover requires that each left-hand-side of dependencies is unique. 
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Obtaining Minimal Cover 

•  Step 1: Put the FDs in a standard form (i.e. 
right-hand side should contain only single 
attribute) 

•  Step 2: Minimize the left side of each FD by 
eliminating any extraneous attributes. 

•   Step 3: Delete redundant FDs  



•  Find minimal cover for F = {ABH → CK, 
A → D, C → E, BGH → L, L → AD, E → 
L, BH → E}  
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•  Step 1: Make RHS of each FD into a single 
attribute:  

 
F = {ABH → C, ABH → K, A → D, C → E, 
BGH → L, L → A, L → D, E → L, BH → E}  

19 



•  F = {ABH → C, ABH → K, A → D, C → E, BGH → L, L → A, L 
→ D, E → L, BH → E} 

•  Step 2: Eliminate extraneous (redundant) attributes from LHS, e.g. 
Can an attribute be deleted from ABH → C?  
–  Compute (AB)+, (BH)+, (AH)+ and see if any of them contains C. (Why?) 

–  (AB)+ = ABD, (BH)+ = ABCDEHKL, (AH)+ = ADH. Since C ∈ (BH)+, BH 
→ C is entailed by F. So A is redundant in ABH → C. Similarly, A is also 
redundant in ABH → K. Check further to see if B or H is redundant as well. 

–  Similarly, for BGH → L, G is redundant since L ∈ (BH)+. 
  
–  F = {BH → C, BH → K, A → D, C → E, BH → L, L → A, L → D, E → L, 

BH → E} 
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•  F = {BH → C, BH → K, A → D, C → E, BH → L, L → 
A, L → D, E → L, BH → E} 

•  Step 3: Delete redundant FDs from F. 

–  If F – {f} infers f, then f is redundant, i.e. if f is X → A, then 
check if X+ using F – f still contains A. If it does, then it 
means X → A can be inferred by other FDs. 

–  e.g. For BH → L, (BH)+ (not using BH → L) = ACDEKL, 
which contains L. This means BH → L can be inferred by 
other FDs, so it’s a redundant FD. 

–  In fact, BH → L can be inferred by BH → E, E → L.  
–  Check other FDs using the same algorithm. 

•  Note: the order of Step 2 and Step 3 should not be exchanged. 
21 
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What to do with Minimal Cover? 
•  After obtaining the minimal cover, for each FD X→ 

A in the minimal cover that is not preserved, create a 
table consisting of XA (so we can check dependency 
in this new table, i.e. dependency is preserved). 

•  Why is this new table guaranteed to be in 3NF 
(whereas if we created the new table from F, it 
might not?) 
–  Since X → A is in the minimal cover, Y → A does not 

hold for any Y that is a strict subset of X. 
•  So X is a key for XA (satisfies condition #2) 
•  If any other dependencies hold over XA, the right side 

can involve only attributes in X because A is a single 
attribute (satisfies condition #3).  
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Comparison of BCNF and 3NF 

•  It is always possible to decompose a relation into a set of  
relations that are in 3NF such that: 
–  the decomposition is lossless 
–  the dependencies are preserved 

•  It is always possible to decompose a relation into a set of 
relations that are in BCNF such that: 
–  the decomposition is lossless 
–  it may not be possible to preserve dependencies. 
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Normalization Review 
•  Identify all FD’s in F+ 
•  Identify candidate keys 
•  Identify (strongest, or specific) normal forms 

–  BCNF, 3NF 
•  Schema decomposition 

–  When to decompose 
–  How to check if a decomposition is lossless-join and/or dependency 

preserving 
•  Use projection of F+ to check for dependency preservation 

–  Decompose into: 
•  Lossless-join 
•  Dependency preserving 

–  Use minimal cover 



Normalization Theory -  
Practice Questions 
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Example 

A B C 
1 1 2 
1 1 3 
2 2 3 
2 2 2 

FDs with A as 
the left side: 

Satisfied by the 
relation? 

A→A Yes (trivial FD) 
A→B Yes 
A→C No: tuples 1&2 
AB →A Yes (trivial FD) 
AC →B Yes 
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Example 
Let F={ A → BC, B →C }. Is C →AB in F+? 
Answer: No. Either of the following 2 

reasons is ok: 
Reason 1) C+=C, and does not include AB.   
Reason 2) We can find a relation instance 

such that it satisfies F but does not satisfy 
C → AB. A B C 

1 1 2 
2 1 2 
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List all the non-trivial FDs in F+ 

•  Given F={ A → B, B → C}. Compute F+ 

(with attributes A, B, C). 

A B C AB AC BC ABC 
A √ √ √ √ √ √ √ 
B √ √ √ 
C √ 
AB √ √ √ √ √ √ √ 
AC √ √ √ √ √ √ √ 
BC √ √ √ 
ABC √ √ √ √ √ √ √ 

Attribute closure 

A+=ABC 
B+=BC 
C+=C 
AB+=ABC 
AC+=ABC 
BC+=BC 
ABC+=ABC 
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Example 
•  Given F={ A → B, B → C}. Find a relation that 

satisfies F: 

A B C 
1 1 2 
2 1 2 

•  Given F={ A → B, B → C}. Find a relation that 
satisfies F but does not satisfy B → A. The 
above example suffices. 

•  Can you find an instance that satisfies F but not 
A → C? No. Because A → C is in F+ 



30 

Examples 
R(A, B, C, D, E),  
F = {A → B, C → D} 
 
Candidate key: ACE. How do we know? 
 
Intuitively,  
- A is not determined by any other attributes (like E), 
and A has to be in a candidate key (because a 
candidate key has to determine all the attributes). 
-  Now if A is in a candidate key, B cannot be in the same 
candidate key, since we can drop B from the candidate 
without losing the property of being a “key”. 
-  So B cannot be in a candidate key 
-  Same reasoning apply to others attributes. 
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Example 
R(A, B, C, D, E),  
F = {A → B, C → D} [Same as previous] 
 
Which normal form? 
 
Not in BCNF. This is the case where all attributes in 
the FDs appear in R. We consider A, and C to see if 
either is a superkey of not. Obviously, neither A nor 
C is a superkey, and hence R is not in BCNF. More 
precisely, we have A → B is in F+ and non-trivial,  
but A is not a superkey of R. 
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Example 

R(A, B, C, D, E) 
F = {A → B, C → D} [Same as previous] 
 
Which normal form? 
 
We already know that it’s not in BCNF. 
Not in 3NF either. We have A → B is in F+ and non-trivial,  
but A is not a superkey of R. Furthermore, B is not 
in any candidate key (since the only candidate key 
is ACE). 
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Example 

•  R(A,B,F), F = {AC → E, B → F}. 
•  Candidate key? AB 
•  BCNF? No, because of B → F (B is not a 

superkey). 
•  3NF? No, because of B → F (F is not part of a 

candidate key). 
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Example 

•  R(D, C, H, G), F = {A → I, I → A} 
•  Candidate key? DCHG 
•  BCNF? Yes 
•  3NF? Yes 
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Example 
•  R(A, B, C, D, E, G, H) 
     F={AB → C, AC → B, B → D, BC → A, E → G} 
 
•  Candidate keys?  

–  H has to be in all candidate keys 
–  E has to be in all candidate keys 
–  G cannot be in any candidate key (since E is in all candidate keys already). 
–  Since AB → C, AC → B and BC → A, we know no candidate key can 

have ABC together. 
–  AEH, BEH, CEH are not superkeys. 
–  Try ABEH, ACEH, BCEH. They are all superkeys. And we know they are 

all candidate keys (since above properties) 
–  These are the only candidate keys: (1) each candidate key either contains 

A, or B, or C since no attributes other than A,B,C determine A, B, C, and 
(2) if a candidate key contains A, then it must contain either B, or C, and 
so on. 
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Example 
•  Same as previous 
•  Not in BCNF, not in 3NF 
•  Decomposition: 

Using B → D 

ABCDEGH 

BD ABCEGH 

ABC ABEGH 

Using AB → C EG ABEH 

Using E → G 

R(A, B, C, D, E, G, H) 
F={AB → C, AC → B, B → D, 
BC → A, E → G} 
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Example 
•  R(A, B, C, D, E, G, H) 
    F={AB → C, AC → B, B → D, BC → A, E → 

G} 
•  Decomposition: BD, ABC, EG, ABEH 
•  Why good decomposition? 

–  They are all in BCNF 
–  Lossless-join decomposition 

•  How do you know this if you don’t know how R was 
decomposed? 

–  All dependencies are preserved. 
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Example 

•  R(A, B, D, E) decomposed into R1(A, B, D), 
R2(A, B, E) 

•  F={AB → DE} 
•  It is a dependency preserving decomposition! 

–  AB → D can be checked in R1 
–  AB → E can be checked in R2 
–  {AB → DE} is equivalent to {AB → D, AB → E} 


