Schema Refinement \& Normalization Theory

Normal Forms

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if for each non-trivial FD $\mathrm{X} \rightarrow \mathrm{A}$ in F, X is a super key for R (i.e., $\mathrm{X} \rightarrow \mathrm{R}$ in F^{+}).
- $\mathrm{An} \mathrm{FD} \mathrm{X} \rightarrow \mathrm{A}$ is said to be "trivial" if $\mathrm{A} \subseteq \mathrm{X}$.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- If BCNF:
- No "data" in R can be predicted using FDs alone. Why:
- Because X is a (super)key, we can't have two different tuples that agree on the X value

Suppose we know that this instance satisfies $\mathrm{X} \rightarrow \mathrm{A}$. This situation cannot arise if the relation is in BCNF.

X	Y	A
x	y 1	a
x	y 2	$?$

BCNF

- Consider relation R with FDs F . If $\mathrm{X} \rightarrow \mathrm{A}$ in F over $\mathrm{R}(\mathrm{X} \subseteq \mathrm{R}, \mathrm{A} \subseteq \mathrm{R})$ violates BCNF , it means
$-A$ is not in X, and
$-X \rightarrow R$ is not in F^{+}
\rightarrow non-trivial FD
$\rightarrow \mathrm{X}$ is not a superkey
- In other words, for $\mathrm{X} \rightarrow \mathrm{A}$ in F over R to satisfy BCNF requirement, at least one of the followings must be true:
$-\mathrm{X} \rightarrow \mathrm{A}$ is trivial, i.e. A is in $\mathrm{X}, \underline{\text { or }}$
-X is a superkey, i.e. $\mathrm{X} \rightarrow \mathrm{R}$ is in F^{+}

Decomposition of a Relation Schema

- When a relation schema is not in BCNF: decompose.
- Suppose that relation R contains attributes $A 1$... An. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of at least one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

Decomposition example

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
$231-31-5368$	Smiley	22	8	10	30
$131-24-3650$	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
$612-67-4134$	Madayan	35	8	10	40

$=$| S | N | L | R | H |
| :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 40 |

Original relation (not stored in DB!)

Decomposition (in the DB)

Problems with Decompositions

- There are three potential problems to consider:
(1) Some queries become more expensive.
- e.g., How much did sailor Attishoo earn? (earn = W* H)
(2) Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
- Fortunately, not in the SNLRWH example.
(3) Checking some dependencies may require joining the instances of the decomposed relations.
- Fortunately, not in the SNLRWH example.
- Tradeoff: Must consider these issues vs. redundancy.

Example of problem 2

Student_ID	Name	Dcode	Cno	Grade
$123-22-3666$	Attishoo	INFS	501	A
$231-31-5368$	Guldu	CS	102	B
$131-24-3650$	Smethurst	INFS	614	B
$434-26-3751$	Guldu	INFS	614	A
$434-26-3751$	Guldu	INFS	612	C

Name	Dcode	Cno	Grade			
Attishoo	INFS	501	A			
Guldu	CS	102	B			
Smethurst	INFS	614	B			
Guldu	INFS	614	A			
Guldu	INFS	612	C	\quad	Student_ID	Name
:---	:---	:---				
$123-22-3666$	Attishoo					
$231-31-5368$	Guldu					
$131-24-3650$	Smethurst					
$434-26-3751$	Guldu					

Lossless Join Decompositions

- Decomposition of R into R_{1} and R_{2} is losslessjoin w.r.t. a set of FDs F if, for every instance r that satisfies F , we have:

$$
\pi_{R_{1}}(r) \triangleright \triangleleft \pi_{R_{2}}(r)=r
$$

- It is always true that

$$
r \subseteq \pi_{R_{1}}(r) \triangleright \triangleleft \pi_{R_{2}}(r)
$$

- In general, the other direction does not hold! If it does, the decomposition is lossless-join.

Example (lossy decomposition)

Example (lossless join decomposition)

Suppose $(A B \cap B C) \rightarrow B C$

Lossless Join Decomposition

- The decomposition of R into R_{1} and R_{2} is lossless-join wrt F if and only if F^{+}contains:
$-R_{1} \cap R_{2} \rightarrow R_{1}$, or
$-\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}$
- In particular, the decomposition of R into (UV) and (R-V) is lossless-join if $\mathrm{U} \rightarrow \mathrm{V}$ holds on R
- assume U and V do not share attributes.
- WHY?

Decomposition

- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2))

Decomposition into BCNF

- Recall: Consider relation R with FDs F. If $\mathrm{X} \rightarrow \mathrm{A}$ in F over $\mathrm{R}(\mathrm{X} \subseteq \mathrm{R}, \mathrm{A} \subseteq \mathrm{R})$ violates BCNF , it means
$-A$ is not in X, and
$-X \rightarrow R$ is not in F^{+}
\rightarrow non-trivial FD
$\rightarrow X$ is not a superkey
- Recall that for $\mathrm{X} \rightarrow \mathrm{A}$ in F over R to satisfy BCNF requirement, at least one of the followings must be true:
$-X \rightarrow A$ is trivial, i.e. A is in $X, \underline{\text { or }}$
-X is a superkey, i.e. $\mathrm{X} \rightarrow \mathrm{R}$ is in F^{+}

Decomposition into BCNF

- Consider relation R with FDs F . If $\mathrm{X} \rightarrow \mathrm{A}$ in F over $\mathrm{R}(\mathrm{X} \subseteq \mathrm{R}, \mathrm{A} \subseteq \mathrm{R})$ violates BCNF , i.e.,
$-A$ is not in X, and
$-X \rightarrow R$ is not in F^{+}
\rightarrow non-trivial FD
$\rightarrow \mathrm{X}$ is not a (super)key
- Then: decompose R into R - A and XA.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

BCNF Decomposition Example

- $R=(A, B, C)$

$$
F=\{A \rightarrow B ; B \rightarrow C\}
$$

$$
\operatorname{Key}=\{A\}
$$

- R is not in BCNF ($B \rightarrow C$ but B is not a superkey)
- Decomposition

$$
\begin{aligned}
& -R_{1}=(B, C) \\
& -R_{2}=(A, B)
\end{aligned}
$$

How do we know R is in BCNF ?

- If R has only two attributes, then it is in BCNF
- If F only uses attributes in R, then:
-R is in BCNF if and only if for each $\mathrm{X} \rightarrow \mathrm{Y}$ in $F\left(\right.$ not $\left.\boldsymbol{F}^{+}!\right)$, X is a superkey of R , i.e., $\mathrm{X} \rightarrow \mathrm{R}$ is in F^{+}(not F).
- What if F uses attributes not in R ?
- Next

Checking for BCNF Violations

- List all non-trivial FDs
- Ensure that left hand side of each FD is a superkey
- Does not work on decomposed tables
- Consider $R=(A, B, C, D, E)$, with $F=\{A \rightarrow B, B C \rightarrow$ D
- Decompose R into $R_{1}=(A, B)$ and $R_{2}=(A, C, D, E)$
- Neither of the dependencies in F contain only attributes from (A, C, D, E) so we might be mislead into thinking R_{2} satisfies BCNF.
- In fact, dependency $A C \rightarrow D$ in F^{+}shows R_{2} is not in BCNF.

Testing Decomposition for BCNF

- To check if a relation R_{i} in a decomposition of R is in BCNF,
- Either test R_{i} for BCNF with respect to the restriction of F to R_{i} (that is, all FDs in F^{+}that contain only attributes from R_{i})
- or use the original set of dependencies F that hold on R, but with the following test:
- for every set of attributes $\mathrm{X} \subseteq R_{i}$, check that X^{+}either includes no attribute of $R_{i}-\mathrm{X}$, or includes all attributes of R_{i}.
- If the condition is violated by some $\mathrm{X} \rightarrow \mathrm{Y}$ in F, the dependency $\mathrm{X} \rightarrow\left(\mathrm{X}^{+}-\mathrm{X}\right) \cap R_{i}$ can be shown to hold on R_{i}, and R_{i} violates BCNF .
- We use above dependency to decompose R_{i}

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
- course_id \rightarrow title, dept_name, credits
- building, room_number \rightarrow capacity
- course_id, sec_id, semester, year \rightarrow building, room_number, time_slot_id
- A candidate key \{course_id, sec_id, semester, year $\}$.
- BCNF Decomposition:
- course_id \rightarrow title, dept_name, credits holds
- but course_id is not a superkey.
- We replace class by:
- course(course_id, title, dept_name, credits)
- class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
- How do we know this?
- building, room_number \rightarrow capacity holds on class-1
- but \{building, room_number $\}$ is not a superkey for class-1.
- We replace class-l by:
- classroom (building, room_number, capacity)
- section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

BCNF Decomposition Example 2

- Assume relation schema CSJDPQV:

Contracts(contract_id, supplier, project, dept, part, qty, value)

- key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- To deal with SD $\rightarrow \mathrm{P}$, decompose into SDP, CSJDQV.
- To deal with $\mathrm{J} \rightarrow \mathrm{S}$, decompose CSJDQV into JS and CJDQV
- A tree representation of the decomposition:

BCNF Decomposition

- In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

