
1

Schema Refinement &
Normalization Theory

Normal Forms

Boyce-Codd Normal Form (BCNF)
•  Reln R with FDs F is in BCNF if for each non-trivial FD

X → A in F , X is a super key for R (i.e., X → R in F+).
–  An FD X → A is said to be “trivial” if A ⊆ X.

•  In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.

•  If BCNF:
–  No “data” in R can be predicted using FDs alone. Why:
–  Because X is a (super)key, we can’t have two
 different tuples that agree on the X value

X Y A

x y1 a
x y2 ?

Suppose we know that this instance satisfies X → A. This situation
cannot arise if the relation is in BCNF.

3

BCNF
•  Consider relation R with FDs F. If X → A in F

over R (X ⊆ R, A ⊆ R) violates BCNF, it means
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a superkey

•  In other words, for X → A in F over R to satisfy
BCNF requirement, at least one of the followings
must be true:
–  X → A is trivial, i.e. A is in X, or
–  X is a superkey, i.e. X → R is in F+

4

Decomposition of a Relation Schema
•  When a relation schema is not in BCNF: decompose.
•  Suppose that relation R contains attributes A1 ... An. A

decomposition of R consists of replacing R by two or more
relations such that:

–  Each new relation scheme contains a subset of the attributes of R
(and no attributes that do not appear in R), and

–  Every attribute of R appears as an attribute of at least one of the new
relations.

•  Intuitively, decomposing R means we will store instances of
the relation schemes produced by the decomposition,
instead of instances of R.

5

Decomposition example

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

=

Original relation
(not stored in DB!)

Decomposition
(in the DB)

6

Problems with Decompositions
•  There are three potential problems to consider:
  Some queries become more expensive.

•  e.g., How much did sailor Attishoo earn? (earn = W*H)
  Given instances of the decomposed relations, we may not be

able to reconstruct the corresponding instance of the original
relation!

•  Fortunately, not in the SNLRWH example.
  Checking some dependencies may require joining the

instances of the decomposed relations.
•  Fortunately, not in the SNLRWH example.

•  Tradeoff: Must consider these issues vs. redundancy.

7

Example of problem 2
Student_ID Name Dcode Cno Grade
123-22-3666 Attishoo INFS 501 A
231-31-5368 Guldu CS 102 B
131-24-3650 Smethurst INFS 614 B
434-26-3751 Guldu INFS 614 A
434-26-3751 Guldu INFS 612 C

Name Dcode Cno Grade
Attishoo INFS 501 A
Guldu CS 102 B
Smethurst INFS 614 B
Guldu INFS 614 A
Guldu INFS 612 C

Student_ID Name
123-22-3666 Attishoo
231-31-5368 Guldu
131-24-3650 Smethurst
434-26-3751 Guldu

≠

8

Lossless Join Decompositions
•  Decomposition of R into R1 and R2 is lossless-

join w.r.t. a set of FDs F if, for every instance r
that satisfies F, we have:

•  It is always true that

•  In general, the other direction does not hold!
If it does, the decomposition is lossless-join.

rrr RR =)()(
21

ππ

)()(
21
rrr RR ππ ⊆

9

Example (lossy decomposition)

A B C
1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8

)()(rr BCAB ππ

)(rBCπ

)(rABπ

r

10

Example (lossless join decomposition)

A B C
1 2 3
4 5 6
7 2 3

A B C
1 2 3
4 5 6
7 2 3

A B
1 2
4 5
7 2

B C
2 3
5 6

)()(rr BCAB ππ

)(rBCπ

)(rABπ
r

Suppose (AB∩BC)→ BC

11

Lossless Join Decomposition
•  The decomposition of R into R1 and R2 is

lossless-join wrt F if and only if F+ contains:
–  R1 ∩R2 → R1, or
–  R1 ∩R2 → R2

•  In particular, the decomposition of R into
(UV) and (R-V) is lossless-join if U → V
holds on R
–  assume U and V do not share attributes.
– WHY?

12

Decomposition
•  Definition extended to decomposition into 3

or more relations in a straightforward way.

•  It is essential that all decompositions used to
deal with redundancy be lossless! (Avoids
Problem (2))

13

Decomposition into BCNF
•  Recall: Consider relation R with FDs F. If X → A

in F over R (X ⊆ R, A ⊆ R) violates BCNF, it
means
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a superkey

•  Recall that for X → A in F over R to satisfy BCNF
requirement, at least one of the followings must be
true:
–  X → A is trivial, i.e. A is in X, or
–  X is a superkey, i.e. X → R is in F+

14

Decomposition into BCNF
•  Consider relation R with FDs F. If X → A in F

over R (X ⊆ R, A ⊆ R) violates BCNF, i.e.,
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a (super)key

•  Then: decompose R into R - A and XA.
•  Repeated application of this idea will give us a

collection of relations that are in BCNF; lossless
join decomposition, and guaranteed to terminate.

15

BCNF Decomposition Example

•  R = (A, B, C)
F = {A → B; B → C}
Key = {A}

•  R is not in BCNF (B → C but B is not a superkey)
•  Decomposition

–  R1 = (B, C)
–  R2 = (A, B)

16

How do we know R is in BCNF?
•  If R has only two attributes, then it is in

BCNF
•  If F only uses attributes in R, then:

– R is in BCNF if and only if for each X → Y in
F (not F+!), X is a superkey of R, i.e., X → R is
in F+ (not F!).

•  What if F uses attributes not in R?
– Next

17

Checking for BCNF Violations
•  List all non-trivial FDs
•  Ensure that left hand side of each FD is a

superkey
•  Does not work on decomposed tables

–  Consider R = (A, B, C, D, E), with F = {A → B, BC →
D}

•  Decompose R into R1 = (A,B) and R2 = (A,C, D, E)
•  Neither of the dependencies in F contain only attributes from

 (A,C,D,E) so we might be mislead into thinking R2 satisfies
BCNF.

•  In fact, dependency AC → D in F+ shows R2 is not in BCNF.

Testing Decomposition for BCNF
•  To check if a relation Ri in a decomposition of R

is in BCNF,
– Either test Ri for BCNF with respect to the

restriction of F to Ri (that is, all FDs in F+ that
contain only attributes from Ri)

–  or use the original set of dependencies F that hold
on R, but with the following test:

–  for every set of attributes X ⊆ Ri, check that X+ either includes
no attribute of Ri- X, or includes all attributes of Ri.

•  If the condition is violated by some X→Y in F, the
dependency X→ (X+ - X) ∩ Ri

 can be shown to hold on
Ri, and Ri violates BCNF.

•  We use above dependency to decompose Ri

Example of BCNF Decomposition
•  class (course_id, title, dept_name, credits, sec_id, semester,

year, building, room_number, capacity, time_slot_id)
•  Functional dependencies:

–  course_id→ title, dept_name, credits
–  building, room_number→capacity
–  course_id, sec_id, semester, year→building, room_number,

time_slot_id
•  A candidate key {course_id, sec_id, semester, year}.
•  BCNF Decomposition:

–  course_id→ title, dept_name, credits holds
•  but course_id is not a superkey.

–  We replace class by:
•  course(course_id, title, dept_name, credits)
•  class-1 (course_id, sec_id, semester, year, building, room_number,

capacity, time_slot_id)

BCNF Decomposition (Cont.)

•  course is in BCNF
–  How do we know this?

•  building, room_number → capacity holds on
class-1
–  but {building, room_number} is not a superkey for

class-1.
–  We replace class-1 by:

•  classroom (building, room_number, capacity)
•  section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)

•  classroom and section are in BCNF.

21

BCNF Decomposition Example 2
•  Assume relation schema CSJDPQV:

 Contracts(contract_id, supplier, project, dept, part, qty, value)
–  key C, JP → C, SD → P, J → S

•  To deal with SD → P, decompose into SDP, CSJDQV.
•  To deal with J → S, decompose CSJDQV into JS and CJDQV
•  A tree representation of the decomposition:

CSJDPQV

SDP CSJDQV

JS CJDQV
Using SD → P

Using J → S
?

22

BCNF Decomposition

•  In general, several dependencies may cause
violation of BCNF. The order in which we
“deal with” them could lead to very
different sets of relations!

