Schema Refinement & Normalization Theory

Normal Forms

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if for each non-trivial FD X → A in F, X is a super key for R (i.e., X → R in F⁺).
 An FD X → A is said to be "trivial" if A ⊆ X.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are *key constraints*.
- If BCNF:
 - No "data" in R can be predicted using FDs alone. Why:
 - Because X is a (super)key, we can't have two different tuples that agree on the X value

Suppose we know that this instance satisfies $X \rightarrow A$. This situation cannot arise if the relation is in BCNF.

BCNF

- Consider relation R with FDs F. If $X \rightarrow A$ in F over R ($X \subseteq R$, $A \subseteq R$) violates BCNF, it means
 - $A \text{ is not in } X, \underline{and} \rightarrow not$

 $- X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a superkey
- In other words, for $X \rightarrow A$ in *F* over R to satisfy BCNF requirement, <u>at least one</u> of the followings must be true:
 - $X \rightarrow A$ is trivial, i.e. A is in X, <u>or</u>
 - X is a superkey, i.e. $X \rightarrow R$ is in F^+

Decomposition of a Relation Schema

- When a relation schema is not in BCNF: decompose.
- Suppose that relation R contains attributes *A1* ... *An*. A *decomposition* of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of at least one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

Decomposition example

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	Ν	L	R	Η
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Original relation (not stored in DB!)

Decomposition (in the DB)

Problems with Decompositions

- There are three potential problems to consider:
 - Some queries become more expensive.
 - e.g., How much did sailor Attishoo earn? (earn = W^*H)
 - ② Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
 - Output: Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.
- <u>*Tradeoff*</u>: Must consider these issues vs. redundancy.

Example of problem 2

Student_ID	Name	Dcode	Cno	Grade
123-22-3666	Attishoo	INFS	501	А
231-31-5368	Guldu	CS	102	В
131-24-3650	Smethurst	INFS	614	В
434-26-3751	Guldu	INFS	614	A
434-26-3751	Guldu	INFS	612	С

Name	Dcode	Cno	Grade
Attishoo	INFS	501	А
Guldu	CS	102	В
Smethurst	INFS	614	В
Guldu	INFS	614	А
Guldu	INFS	612	С

Student_ID	Name
123-22-3666	Attishoo
231-31-5368	Guldu
131-24-3650	Smethurst
434-26-3751	Guldu

≠

Lossless Join Decompositions

- Decomposition of R into R₁ and R₂ is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F, we have: $\pi_{R_1}(r) \triangleright \triangleleft \pi_{R_2}(r) = r$
- It is always true that $r \subseteq \pi_{R_1}(r) \triangleright \triangleleft \pi_{R_2}(r)$
- In general, the other direction does not hold! If it does, the decomposition is *lossless-join*.

Suppose $(AB \cap BC) \rightarrow BC$

Lossless Join Decomposition

• The decomposition of R into R_1 and R_2 is lossless-join wrt F if and only if F⁺ contains:

$$-R_1 \cap R_2 \rightarrow R_1, \text{ or}$$

 $- R_1 \cap R_2 \twoheadrightarrow R_2$

- In particular, the decomposition of R into (UV) and (R-V) is lossless-join if U → V holds on R
 - assume U and V do not share attributes.
 - WHY?

Decomposition

- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! <u>(Avoids</u> <u>Problem (2))</u>

Decomposition into BCNF

- Recall: Consider relation R with FDs F. If $X \rightarrow A$ in *F* over R ($X \subseteq R, A \subseteq R$) violates BCNF, it means
 - A is not in X, and
 - $X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a superkey
- Recall that for $X \rightarrow A$ in *F* over R to satisfy BCNF requirement, <u>at least one</u> of the followings must be true:
 - $X \rightarrow A$ is trivial, i.e. A is in X, <u>or</u>
 - X is a superkey, i.e. $X \rightarrow R$ is in F^+

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow A$ in F over R ($X \subseteq R, A \subseteq R$) violates BCNF, i.e.,
 - A is not in X, <u>and</u> –

 $- X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a (super)key
- Then: decompose R into R A and XA.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

BCNF Decomposition Example

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B; B \rightarrow C\}$
 $Key = \{A\}$

- *R* is not in BCNF ($B \rightarrow C$ but *B* is not a superkey)
- Decomposition

$$-R_1 = (B, C)$$

 $-R_2 = (A, B)$

How do we know R is in BCNF?

- If R has only two attributes, then it is in BCNF
- If F only uses attributes in R, then:
 - R is in BCNF *if and only if* for each $X \rightarrow Y$ in F (*not* F^+ !), X is a superkey of R, i.e., $X \rightarrow R$ is in F⁺ (not F!).
- What if F uses attributes not in R?
 Next

Checking for BCNF Violations

- List all non-trivial FDs
- Ensure that left hand side of each FD is a superkey
- Does not work on decomposed tables
 - Consider R = (A, B, C, D, E), with $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Decompose R into $R_1 = (A,B)$ and $R_2 = (A,C, D, E)$
 - Neither of the dependencies in *F* contain only attributes from (*A*,*C*,*D*,*E*) so we might be mislead into thinking *R*₂ satisfies BCNF.
 - In fact, dependency $AC \rightarrow D$ in F^+ shows R_2 is not in BCNF.

Testing Decomposition for BCNF

- To check if a relation R_i in a decomposition of R is in BCNF,
 - Either test R_i for BCNF with respect to the **restriction** of F to R_i (that is, all FDs in F⁺ that contain only attributes from R_i)
 - or use the original set of dependencies F that hold on R, but with the following test:
 - for every set of attributes $X \subseteq R_i$, check that X^+ either includes no attribute of R_i - X, or includes all attributes of R_i .
 - If the condition is violated by some $X \rightarrow Y$ in *F*, the dependency $X \rightarrow (X^+ X) \cap R_i$ can be shown to hold on R_i , and R_i violates BCNF.
 - We use above dependency to decompose R_i

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - course_id→ title, dept_name, credits
 - building, room_number \rightarrow capacity
 - course_id, sec_id, semester, year→building, room_number, time_slot_id
- A candidate key {*course_id*, *sec_id*, *semester*, *year*}.
- BCNF Decomposition:
 - course_id→ title, dept_name, credits holds
 - but *course_id* is not a superkey.
 - We replace *class* by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- *course* is in BCNF
 - How do we know this?
- *building*, *room_number* → *capacity* holds on *class-1*
 - but {building, room_number} is not a superkey for class-1.
 - We replace *class-1* by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- *classroom* and *section* are in BCNF.

BCNF Decomposition Example 2

- Assume relation schema CSJDPQV: Contracts(*contract_id, supplier, project, dept, part, qty, value*)
 key C, JP → C, SD → P, J → S
- To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
- To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
- A tree representation of the decomposition:

BCNF Decomposition

• In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!