Schema Refinement & Normalization Theory

Functional Dependencies & Normalization

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # of attrs!)
- Typically, we just want to check if a given $FD X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X^+) wrt *F*:
 - Set of all attributes Z such that $X \rightarrow Z$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X⁺
- Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result=X⁺ (under F)
- Method:
 - Step 1: Result :=X;
 - Step 2: Take $Y \rightarrow Z$ in F, and Y is in Result, do: Result := Result $\cup Z$
 - Repeat step 2 until Result cannot be changed and then output Result.

Example of Attribute Closure X⁺

• Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?

- i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Step 1: Result = A Step 2: Consider A \rightarrow B, Result = AB Consider B \rightarrow C, Result = ABC Consider CD \rightarrow E, CD is not in ABC, so stop Step 3: A⁺ = {ABC} E is NOT in A⁺, so A \rightarrow E is NOT in F⁺

Example of computing X⁺

 $F = \{A \rightarrow B, AC \rightarrow D, AB \rightarrow C\}?$

What is X^+ for X = A? (i.e. what is the attribute closure for A?)

Answer: $A^+ = ABCD$

Example of Attribute Closure

R = (A, B, C, G, H, I) $F = \{A \rightarrow B; A \rightarrow C; CG \rightarrow H; CG \rightarrow I; B \rightarrow H\}$

- $(AG)^+ = ?$
 - Answer: ABCGHI
- Is AG a candidate key?
 - This question involves two parts:
 - 1. Is AG a super key?
 - Does $AG \rightarrow R? == \text{Is} (AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - Does $A \rightarrow R? ==$ Is $(A)^+ \supseteq R$
 - Does $G \rightarrow R? ==$ Is $(G)^+ \supseteq R$

Uses of Attribute Closure

- There are several uses of the attribute closure algorithm:
- Testing for superkey:
 - To test if X is a superkey, we compute $X^{+,}$ and check if X^{+} contains all attributes of *R*.
- Testing functional dependencies
 - To check if a functional dependency $X \rightarrow Y$ holds (or, in other words, is in F^+), just check if $Y \subseteq X^+$.
 - That is, we compute X⁺ by using attribute closure, and then check if it contains Y.
 - Is a simple and cheap test, and very useful
- Computing closure of F

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	Α	В	C	AB	AC	BC	ABC
А							
В							
С							
AB							
AC							
BC							
ABC							

Step 3: Fill in the matrix using the results from Step 2

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure
A+=?
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

We'll do an example on A⁺.

Step 1: Result = A Step 2: Consider A \rightarrow B, Result = A \cup B = AB Consider B \rightarrow C, Result = AB \cup C = ABC Step 3: A⁺ = {ABC}

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	A	В	С	AB	AC	BC	ABC
А							\checkmark
В							
С							
•							

Step 3: Fill in the matrix using the results from Step 2. We have $A^+=ABC$. Now fill in the row for A. Consider the first column. Is A part of A^+ ? Yes, so check it. Is B part of A^+ ? Yes, so check it... and so on.

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure	
A ⁺ = ABC	
B+=?	
C+=?	
AB+=?	
AC+=?	
BC+=?	
ABC+=?	10

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

	A	B	C	AB	AC	BC	ABC	Attribute closure
Α							\checkmark	A ⁺ =ABC
В								B ⁺ =BC
С								$C^+=C$
AB								AB+=ABC
AC								AC+=ABC
BC								BC+=BC
ABC				\checkmark				ABC+=ABC

• An entry with \checkmark means FD (the row) \rightarrow (the column) is in F⁺.

• An entry gets $\sqrt{\text{when (the column) is in (the row)}^+}$

Step 4: Derive rules.

	A	В	С	AB	AC	BC	ABC
А							
В							
С							
AB							
AC							
BC							
ABC							

A→BC

- An entry with \checkmark means FD (the row) \rightarrow (the column) is in F⁺.
- An entry gets \checkmark when (the column) is in (the row)⁺

12

Check if two sets of FDs are equivalent

• Two sets of FDs are equivalent if they logically imply the same set of FDs.

- i.e., if $F_1^+ = F_2^+$, then they are equivalent.

- For example, $F_1 = \{A \rightarrow B, A \rightarrow C\}$ is equivalent to $F_2 = \{A \rightarrow BC\}$
- How to test? Two steps:
 - *Every* FD in F_1 is in F_2^+
 - *Every* FD in F_2 is in F_1^+
- These two steps can use the algorithm (many times) for X⁺

Summary

- Constraints give rise to redundancy
 - Three anomalies
- FD is a "popular" type of constraint
 - Satisfaction & violation
 - Logical implication
 - Reasoning
- Armstrong's Axioms
 - FD inference/derivation
- Computing the closure of FD' s (F⁺)
- Check for existence of an FD
 - By computing the Attribute closure

Normal Forms

- The first question: Is any refinement needed?
- Normal forms:
 - If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Normal Forms

- First normal form (1NF)
 - Every field must contain atomic values, i.e. no sets or lists.
 - Essentially all relations are in this normal form
- Second normal form (2NF)
 - Any relation in 2NF is also in 1NF
 - All the non-key attributes must depend upon the WHOLE of the candidate key rather than just a part of it.
 - It is only relevant when the key is composite, i.e., consists of several fields.
 - e.g. Consider a relation:
 - Inventory(part, warehouse, quantity, warehouse_address).
 - Suppose {part, warehouse} is a candidate key.
 - warehouse_address depends upon warehouse alone 2NF violation
 - Solution: decompose

Normal Forms

- Boyce-Codd Normal Form (BCNF)
 Any relation in BCNF is also in 2NF
- Third normal form (3NF)
 Any relation in BCNF is also in 3NF

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if for each non-trivial FD $X \rightarrow A$ in F, X is a super key for R (i.e., $X \rightarrow R$ in F^+).
 - An FD X \rightarrow A is said to be "trivial" if A \in X.
 - However if not all XA are in R, then we don't care.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are *key constraints*.
- If BCNF:
 - No "data" in R can be predicted using FDs alone. Why:
 - Because X is a (super)key, we can't have two different tuples that agree on the X value

Suppose we know that this instance satisfies $X \rightarrow A$. This situation cannot arise if the relation is in BCNF.

BCNF

- Consider relation R with FDs F. If $X \rightarrow A$ in F over R violates BCNF, it means
 - XA are all in R, and
 - A is not in X, and
 - $X \rightarrow R$ is not in F^+

 \rightarrow non-trivial FD

- \rightarrow X is not a superkey
- In other words, for $X \rightarrow A$ in *F* over R to satisfy BCNF requirement, at least one of the followings must be true:
 - XA are not all in R, or
 - $X \rightarrow A$ is trivial, i.e. A is in X, <u>or</u>
 - X is a superkey, i.e. $X \rightarrow R$ is in F^+

Decomposition of a Relation Schema

- When a relation schema is not in BCNF: decompose.
- Suppose that relation R contains attributes *A1* ... *An*. A *decomposition* of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of at least one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

Decomposition example

S	Ν	L	R	W	Η
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	Ν	L	R	Η
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Original relation (not stored in DB!)

Problems with Decompositions

- There are three potential problems to consider:
 - Some queries become more expensive.
 - e.g., How much did sailor Attishoo earn? (earn = W^*H)
 - ② Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
 - Output: Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.
- <u>*Tradeoff*</u>: Must consider these issues vs. redundancy.

Example of problem 2

Student_ID	Name	Dcode	Cno	Grade
123-22-3666	Attishoo	INFS	501	А
231-31-5368	Guldu	CS	102	В
131-24-3650	Smethurst	INFS	614	В
434-26-3751	Guldu	INFS	614	A
434-26-3751	Guldu	INFS	612	C

Name	Dcode	Cno	Grade
Attishoo	INFS	501	А
Guldu	CS	102	В
Smethurst	INFS	614	В
Guldu	INFS	614	A
Guldu	INFS	612	C

Student_ID	Name
123-22-3666	Attishoo
231-31-5368	Guldu
131-24-3650	Smethurst
434-26-3751	Guldu

≠