Schema Refinement \& Normalization Theory

Functional Dependencies \& Normalization

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in \# of attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
- Compute attribute closure of X (denoted X^{+}) wrt F :
- Set of all attributes Z such that $\mathrm{X} \rightarrow \mathrm{Z}$ is in F^{+}
- There is a linear time algorithm to compute this.
- Check if Y is in X^{+}
- Does $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}\}$ imply $\mathrm{A} \rightarrow \mathrm{E}$?
- i.e, is $\mathrm{A} \rightarrow \mathrm{E}$ in the closure F^{+}? Equivalently, is E in A^{+}?

Computing X^{+}

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result= X^{+}(under F)
- Method:
- Step 1: Result :=X;
- Step 2: Take $\mathrm{Y} \rightarrow \mathrm{Z}$ in F , and Y is in Result, do:

Result := Result $\cup Z$

- Repeat step 2 until Result cannot be changed and then output Result.

Example of Attribute Closure X^{+}

- Does $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}\}$ imply $\mathrm{A} \rightarrow$ E?
- i.e, is $\mathrm{A} \rightarrow \mathrm{E}$ in the closure F^{+}? Equivalently, is E in A^{+}?

Step 1: Result = A
Step 2: Consider $A \rightarrow B$, Result $=A B$
Consider $\mathrm{B} \rightarrow \mathrm{C}$, Result $=\mathrm{ABC}$
Consider $\mathrm{CD} \rightarrow \mathrm{E}, \mathrm{CD}$ is not in ABC , so stop
Step 3: $\mathrm{A}^{+}=\{\mathrm{ABC}\}$
E is NOT in A^{+}, so $\mathrm{A} \rightarrow \mathrm{E}$ is NOT in F^{+}

Example of computing X^{+}

$\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{AC} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathrm{C}\} ?$

What is X^{+}for $\mathrm{X}=\mathrm{A}$? (i.e. what is the attribute closure for A ?)

Answer: $\mathrm{A}^{+}=\mathrm{ABCD}$

Example of Attribute Closure

$$
\begin{aligned}
& R=(A, B, C, G, H, I) \\
& F=\{A \rightarrow B ; A \rightarrow C ; C G \rightarrow H ; C G \rightarrow I ; B \rightarrow H\}
\end{aligned}
$$

- $(A G)^{+}=$?
- Answer: ABCGHI
- Is $A G$ a candidate key?
- This question involves two parts:

1. Is AG a super key?
$-\quad$ Does $A G \rightarrow R ?==$ Is $(\mathrm{AG})^{+} \supseteq \mathrm{R}$
2. Is any subset of AG a superkey?
$-\quad$ Does $A \rightarrow R ?==$ Is $(\mathrm{A})^{+} \supseteq \mathrm{R}$
$-\quad$ Does $G \rightarrow R$? $==$ Is $(\mathrm{G})^{+} \supseteq \mathrm{R}$

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
- To test if X is a superkey, we compute X^{+}, and check if X^{+}contains all attributes of R.
- Testing functional dependencies
- To check if a functional dependency $\mathrm{X} \rightarrow \mathrm{Y}$ holds (or, in other words, is in F^{+}), just check if $\mathrm{Y} \subseteq \mathrm{X}^{+}$.
- That is, we compute X^{+}by using attribute closure, and then check if it contains Y.
- Is a simple and cheap test, and very useful
- Computing closure of F

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}$).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows
And columns

	A	B	C	AB	AC	BC	ABC
A							
B							
C							
AB							
AC							
BC							
ABC							

Step 3: Fill in the matrix using the results from Step 2

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure
$\mathrm{A}^{+}=?$
$\mathrm{~B}^{+}=?$
$\mathrm{C}^{+}=?$
$\mathrm{AB}^{+}=?$
$\mathrm{AC}^{+}=?$
$\mathrm{BC}^{+}=?$
$\mathrm{ABC}^{+}=?$

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}$).

We'll do an example on A^{+}.
Step 1: Result = A
Step 2: Consider $A \rightarrow B$, Result $=A \cup B=A B$
Consider $\mathrm{B} \rightarrow \mathrm{C}$, Result $=\mathrm{AB} \cup \mathrm{C}=\mathrm{ABC}$
Step 3: $\mathrm{A}^{+}=\{\mathrm{ABC}\}$

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}$).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows
And columns

	A	B	C	AB	AC	BC	ABC
A	$\sqrt{ }$						
B							
C							
$:$							

Step 3: Fill in the matrix using the results from Step 2. We have $\mathrm{A}^{+}=\mathrm{ABC}$. Now fill in the row for A . Consider the first column. Is A part of A^{+}? Yes, so check it. Is B part of A^{+}? Yes, so check it... and so on.

Step 2: Compute the attribute closures for all attribute/ combination of attributes

Attribute closure
$\mathrm{A}^{+}=\mathrm{ABC}$
$\mathrm{B}^{+}=?$
$\mathrm{C}^{+}=?$
$\mathrm{AB}^{+}=?$
$\mathrm{AC}^{+}=?$
$\mathrm{BC}^{+}=?$
$\mathrm{ABC}^{+}=?$

Computing F^{+}

- Given $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}\}$. Compute F^{+}(with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C})$.

	A	B	C	AB	AC	BC	ABC
A	\checkmark						
B		\checkmark	\checkmark			\checkmark	
C			\checkmark				
AB	\checkmark						
AC	\checkmark						
BC		\checkmark	\checkmark			\checkmark	
ABC	\checkmark						

Attribute closure
$\mathrm{A}^{+}=\mathrm{ABC}$
$\mathrm{B}^{+}=\mathrm{BC}$
$\mathrm{C}^{+}=\mathrm{C}$
$\mathrm{AB}^{+}=\mathrm{ABC}$
$\mathrm{AC}^{+}=\mathrm{ABC}$
$\mathrm{BC}^{+}=\mathrm{BC}$
$\mathrm{ABC}^{+}=\mathrm{ABC}$

- An entry with $\sqrt{ }$ means FD (the row) \rightarrow (the column) is in F^{+}.
- An entry gets $\sqrt{ }$ when (the column) is in (the row) ${ }^{+}$

Computing F^{+}

Step 4: Derive rules.

	A	B	C	AB	AC	BC	ABC
A	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	,	\checkmark
B		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	
C			$\sqrt{ }$				
AB	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
AC	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
BC		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	
ABC	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark

Attribute closure
$\mathrm{A}^{+}=\mathrm{ABC}$
$\mathrm{B}^{+}=\mathrm{BC}$
$\mathrm{C}^{+}=\mathrm{C}$
$\mathrm{AB}^{+}=\mathrm{ABC}$
$\mathrm{AC}^{+}=\mathrm{ABC}$
$\mathrm{BC}^{+}=\mathrm{BC}$
$\mathrm{ABC}^{+}=\mathrm{ABC}$

- An entry with $\sqrt{ }$ means FD (the row) \rightarrow (the column) is in F^{+}.
- An entry gets $\sqrt{ }$ when (the column) is in (the row) ${ }^{+}$

Check if two sets of FDs are equivalent

- Two sets of FDs are equivalent if they logically imply the same set of FDs.
- i.e., if $\mathrm{F}_{1}^{+}=\mathrm{F}_{2}^{+}$, then they are equivalent.
- For example, $\mathrm{F}_{1}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \rightarrow \mathrm{C}\}$ is equivalent to $\mathrm{F}_{2}=\{\mathrm{A} \rightarrow \mathrm{BC}\}$
- How to test? Two steps:
- Every FD in F_{1} is in F_{2}^{+}
- Every FD in F_{2} is in F_{1}^{+}
- These two steps can use the algorithm (many times) for X^{+}

Summary

- Constraints give rise to redundancy
- Three anomalies
- FD is a "popular" type of constraint
- Satisfaction \& violation
- Logical implication
- Reasoning
- Armstrong's Axioms
- FD inference/derivation
- Computing the closure of $\mathrm{FD}^{\prime} \mathrm{s}\left(\mathrm{F}^{+}\right)$
- Check for existence of an FD
- By computing the Attribute closure

Normal Forms

- The first question: Is any refinement needed?
- Normal forms:
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/ minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
- Consider a relation R with 3 attributes, ABC .
- No FDs hold: There is no redundancy here.
- Given $\mathrm{A} \rightarrow \mathrm{B}$: Several tuples could have the same A value, and if so, they'll all have the same B value!

Normal Forms

- First normal form (1NF)
- Every field must contain atomic values, i.e. no sets or lists.
- Essentially all relations are in this normal form
- Second normal form (2NF)
- Any relation in 2NF is also in 1NF
- All the non-key attributes must depend upon the WHOLE of the candidate key rather than just a part of it.
- It is only relevant when the key is composite, i.e., consists of several fields.
- e.g. Consider a relation:
- Inventory(part, warehouse, quantity, warehouse_address).
- Suppose \{part, warehouse\} is a candidate key.
- warehouse_address depends upon warehouse alone - 2NF violation
- Solution: decompose

Normal Forms

- Boyce-Codd Normal Form (BCNF)
- Any relation in BCNF is also in 2NF
- Third normal form (3NF)
- Any relation in BCNF is also in 3NF

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if for each non-trivial FD $\mathrm{X} \rightarrow \mathrm{A}$ in F, X is a super key for R (i.e., $\mathrm{X} \rightarrow \mathrm{R}$ in F^{+}).
- $\mathrm{An} \mathrm{FD} \mathrm{X} \rightarrow \mathrm{A}$ is said to be "trivial" if $\mathrm{A} \in \mathrm{X}$.
- However if not all XA are in R, then we don't care.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- If BCNF:
- No "data" in R can be predicted using FDs alone. Why:
- Because X is a (super)key, we can't have two different tuples that agree on the X value

Suppose we know that this instance satisfies $\mathrm{X} \rightarrow \mathrm{A}$. This situation cannot arise if the relation is in BCNF.

X	Y	A
x	y 1	a
x	y 2	$?$

BCNF

- Consider relation R with FDs F . If $\mathrm{X} \rightarrow \mathrm{A}$ in F over R violates BCNF , it means
- XA are all in R, and
$-A$ is not in X, and
$-\mathrm{X} \rightarrow \mathrm{R}$ is not in F^{+}
\rightarrow non-trivial FD
$\rightarrow X$ is not a superkey
- In other words, for $\mathrm{X} \rightarrow \mathrm{A}$ in F over R to satisfy BCNF requirement, at least one of the followings must be true:
- XA are not all in R, or
$-\mathrm{X} \rightarrow \mathrm{A}$ is trivial, i.e. A is in X , or
$-X$ is a superkey, i.e. $X \rightarrow R$ is in F^{+}

Decomposition of a Relation Schema

- When a relation schema is not in BCNF: decompose.
- Suppose that relation R contains attributes $A 1$... An. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of at least one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

Decomposition example

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
$231-31-5368$	Smiley	22	8	10	30
$131-24-3650$	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
$612-67-4134$	Madayan	35	8	10	40

$=$| S | N | L | R | H |
| :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 40 |

Original relation (not stored in DB!)

Decomposition (in the DB)

Problems with Decompositions

- There are three potential problems to consider:
(1) Some queries become more expensive.
- e.g., How much did sailor Attishoo earn? (earn = W*H)
(2) Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
- Fortunately, not in the SNLRWH example.
(3) Checking some dependencies may require joining the instances of the decomposed relations.
- Fortunately, not in the SNLRWH example.
- Tradeoff: Must consider these issues vs. redundancy.

Example of problem 2

Student_ID	Name	Dcode	Cno	Grade
$123-22-3666$	Attishoo	INFS	501	A
$231-31-5368$	Guldu	CS	102	B
$131-24-3650$	Smethurst	INFS	614	B
$434-26-3751$	Guldu	INFS	614	A
$434-26-3751$	Guldu	INFS	612	C

Name	Dcode	Cno	Grade			
Attishoo	INFS	501	A			
Guldu	CS	102	B			
Smethurst	INFS	614	B			
Guldu	INFS	614	A			
Guldu	INFS	612	C	\quad	Student_ID	Name
:---	:---	:---				
$123-22-3666$	Attishoo					
$231-31-5368$	Guldu					
$131-24-3650$	Smethurst					
$434-26-3751$	Guldu					

