Schema Refinement &
Normalization Theory

Functional Dependencies &
Normalization

Reasoning About FDs (Contd.)

« Computing the closure of a set of FDs can be expensive.
(Size of closure 1s exponential in # of attrs!)

« Typically, we just want to check if a given FD X —Y is in
the closure of a set of FDs F. An efficient check:

— Compute attribute closure of X (denoted X™) wrt F:
» Set of all attributes Z such that X — Z is in F*
* There is a linear time algorithm to compute this.

— Checkif Y isin X*
e DoeskF={A—=B, B—=C, CD—E} imply A — E?

- 1.e, 1S A — E inthe closure F? Equivalently, is E in A™?

2

Computing X

* Input F (a set of FDs), and X (a set of
attributes)

* QOutput: Result=X" (under F)

e Method:
— Step 1: Result :=X;
— Step 2: Take Y — Z in F, and Y 1s in Result, do:
Result := Result U Z

— Repeat step 2 until Result cannot be changed and
then output Result.

3

Example of Attribute Closure X™

e DoesF={A—=B, B—=C, CD—=E} imply A —
E?

- 1.6, 1S A — E 1n the closure F™? Equivalently, 1s E in A™?

Step 1: Result=A
Step 2: Consider A — B, Result = AB
Consider B — C, Result = ABC
Consider CD — E, CD 1s not in ABC, so stop
Step 3: A" = {ABC}
EisNOTinA",so A —= Ei1sNOT in F*)

Example of computing X™

F={A —B, AC =D, AB —C}?

What 1s X for X = A? (1.e. what 1s the attribute
closure for A?)

Answer: A"= ABCD

BN .
Example of Attribute Closure

R=(4,BC G H1I
F={4—B;A—C; CG—H; CG—I; B— H!

e (AG)T ="
— Answer: ABCGHI
* Is AG a candidate key?

— This question involves two parts:

1. Is AG a super key?
— Does AG—= R? ==Is (AG)" 2 R

2. Is any subset of AG a superkey?
— Doesd —=R?==Is(A)" 2 R
— Does G— R?==1Is(G)" 2 R 6

EE
Uses of Attribute Closure

There are several uses of the attribute closure
algorithm:
* Testing for superkey:

— To test if X is a superkey, we compute X and check if
X" contains all attributes of R.

« Testing functional dependencies

— To check if a functlonal dependency X — Y holds (or,
in other words, is in F), just check if Y C X

— That is, we compute X" by using attribute closure, and
then check if it contains Y.

— Is a simple and cheap test, and very useful
e Computing closure of F

7

BN .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C) Step 2: Compute the attribute

Step 1: Construct an empty matrix, with all closures for all attribute/
Possible combinations of attributes in the rows combination of attributes
And columns

A |B|CAB |AC | BC | ABC Attribute closure
A AT=?
B -
c B*=*%
AB C=?
AC AB™=?
BC AC=?
aLiS BC=?
Step 3: Fill in the matrix using the results from Step 2 | ABC*=? 8

BN .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C).

We’ll do an example on A™.

Step 1: Result=A

Step 2: Consider A — B, Result=A U B =AB
Consider B — C, Result=AB U C=ABC

Step 3: A" = {ABC}

BN .
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C) Step 2: Compute the attribute

Step 1: Construct an empty matrix, with all closures for all attribute/
Possible combinations of attributes in the rows combination of attributes
And columns

A |BICIAB JAC |BC | ABC Attribute closure

v WY v v Y A—ABC

B B*=?

c Cr=2

AB™=?

Step 3: Fill in the matrix using the results from Step 2. ACH=?
We have A'=ABC. Now fill in the row for A. Consider BC—2
the first column. Is A part of A™? Yes, so check it. -
Is B part of A™? Yes, so check it... and so on. ABC™=? 10

EETT
Computing F*

 Given F={ A — B, B —= C}. Compute F" (with
attributes A, B, C).

A |[B|C|AB |AC |BC | ABC | | Attribute closure
A |V IVIVIV [V [V |V A™=ABC
B V|V Vv B™=BC
C Vv C=C
AB |V [V |V IV [V |V |V AB™=ABC
AC |V VIV IV [V |V |V AC™=ABC
BC V|V v BC™=BC
ABC |V [V |V |V [V |V |V ABC™=ABC

* An entry with v means FD (the row) — (the column) 1s in F™,

e An entﬁ ﬁets v when ithe columni 1S 1n ithe row i* 11

Computing F*

Step 4: Derive rules. / A—BC

A |B|C|AB |AC |BC AB6 Attribute closure
AWV IVIVIY [V WV A*=ABC
B vV v =BC
C 4 C=C
AB |V [V IV IV [V |V |V AB™=ABC
ac v lvivly v v v AC*=ABC
BC V|V Vv BC*=BC
ABC |V [V [V |V [V [V [V ABC*=ABC

* An entry with v means FD (the row) — (the column) is in F*.
* An entry gets vV when (the column) 1s in (the row)* 12

Check 1f two sets of FDs are

equivalent

* Two sets of FDs are equivalent if they logically
imply the same set of FDs.

— 1.e., 1f F,"=F,7, then they are equivalent.
* For example, F,={A —B, A —C} is equivalent to
F,={A — BC}
 How to test? Two steps:
— Every FDinF1sin F,"
— Every FDmmF,1sin F*
* These two steps can use the algorithm (many
times) for X

13

Summary

Constraints give rise to redundancy
— Three anomalies

e FDis a “popular” type of constraint
— Satisfaction & violation
— Logical implication
— Reasoning
* Armstrong’s Axioms
— FD inference/derivation

 Computing the closure of FD’ s (F")

e (Check for existence of an FD
— By computing the Attribute closure

14

Normal Forms

* The first question: Is any refinement needed?

* Normal forms:

— If a relation 1s 1n a certain normal form (BCNFE, 3NF etc.), it
1s known that certain kinds of problems are avoided/
minimized. This can be used to help us decide whether
decomposing the relation will help.

* Role of FDs in detecting redundancy:

— Consider a relation R with 3 attributes, ABC.
e No FDs hold: There 1s no redundancy here.

* Given A — B: Several tuples could have the same A value, and 1f
so, they’ll all have the same B value!

15

Normal Forms

e First normal form (INF)

— Every field must contain atomic values, 1.e. no sets or lists.
— Essentially all relations are in this normal form

* Second normal form (2NF)
— Any relation in 2NF 1s also in INF

— All the non-key attributes must depend upon the WHOLE of
the candidate key rather than just a part of it.

 Itis only relevant when the key is composite, 1.e., consists of several
fields.
— ¢.g. Consider a relation:
 Inventory(part, warechouse, quantity, warechouse address).
* Suppose {part, warechouse} 1s a candidate key.
» warehouse address depends upon warehouse alone - 2NF violation
* Solution: decompose 16

Normal Forms

* Boyce-Codd Normal Form (BCNF)
— Any relation in BCNF i1s also in 2NF

e Third normal form (3NF)
— Any relation in BCNF i1s also in 3NF

17

Boyce-Codd Normal Form (BCNF)

 Reln R with FDs F'1s in BCNF 1f for each non-trivial FD
X —= A in F, Xis a super key for R (1.e., X =R 1n F™).
— An FD X — A is said to be “trivial” if A € X.
— However i1f not all XA are in R, then we don’t care.

 In other words, R 1s in BCNF 1if the only non-trivial FDs
that hold over R are key constraints.

« If BCNF:
— No “data” in R can be predicted using FDs alone. Why:

~ Because X is a (super)key, we can’t have two X Y |A

different tuples that agree on the X value

Suppose we know that this instance satisfies X — A. This situation X 9)
cannot arise if the relation is in BCNF. y

BT
BCNF

* Consider relation R with FDs F. [f X — A in
over R violates BCNF, it means
— XA are all in R, and
— A is not in X, and —
— X —=Risnotin F* —

 In other words, for X — A 1n F'over R to satisfy
BCNF requirement, at least one of the followings
must be true:
— XA are not all in R, or
— X —= A istrivial, 1.e. Ais in X, or
— X 1s a superkey, 1.e. X = R isin F* 19

Decomposition of a Relation Schema

 When a relation schema 1s not in BCNF: decompose.

e Suppose that relation R contains attributes A/ ... An. A
decomposition of R consists of replacing R by two or more
relations such that:

— Each new relation scheme contains a subset of the attributes of R
(and no attributes that do not appear in R), and

— Every attribute of R appears as an attribute of at least one of the new
relations.
e Intuitively, decomposing R means we will store instances of

the relation schemes produced by the decomposition,
instead of instances of R.

20

Decomposition example

S N L R |W |H
123-22-3666 |Attishoo |48 (8 |10 |40
231-31-5368 |Smiley 22 |8 |10 |30
131-24-3650 |Smethurst (35 |5 |7 |30
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |Madayan |35 |8 |10 |40
S N L |R |H
123-22-3666 |Attishoo |48 |8 |40
_ 231-31-5368 |Smiley 22 |8 (30
_ 131-24-3650 |Smethurst |35 |5 |30
434-26-3751 |Guldu 35 |5 |32
612-67-4134 |Madayan |35 |8 |40

Original relation
(not stored in DB!)

/

Decomposition
(in the DB)

—

Sq |8 |10
517

21

Problems with Decompositions

* There are three potential problems to consider:

@ Some queries become more expensive.
e ¢.g., How much did sailor Attishoo earn? (earn = W*H)

® Given instances of the decomposed relations, we may not be
able to reconstruct the corresponding instance of the original
relation!

 Fortunately, not in the SNLRWH example.

® Checking some dependencies may require joining the
instances of the decomposed relations.

 Fortunately, not in the SNLRWH example.
* Tradeoff: Must consider these 1ssues vs. redundancy.

22

Example of problem 2

Student ID |Name Dcode [Cno Grade

123-22-3666 |Attishoo |INFS 501 A

231-31-5368 |Guldu CS 102 B £

131-24-3650 |Smethurst |[INFS 614 B

434-26-3751 |Guldu INFS 614 A

434-26-3751 |Guldu INFS 612 C
Name Dcode |Cno Grade
Attishoo |INFS |501 |A e
Guldu CS 102 B 123-22-3666 |Attishoo
Smethurst |INFS 614 B ><] 231-31-5368 | Guldu
Guldu INEFS 614 A 131-24-3650 |Smethurst
Guldu INFS 612 C 434-26-3751 |Guldu

23

