
1

Schema Refinement &
Normalization Theory

Functional Dependencies &
Normalization

2

Reasoning About FDs (Contd.)

•  Computing the closure of a set of FDs can be expensive.
(Size of closure is exponential in # of attrs!)

•  Typically, we just want to check if a given FD X →Y is in
the closure of a set of FDs F. An efficient check:

–  Compute attribute closure of X (denoted X+) wrt F:
•  Set of all attributes Z such that X → Z is in F+

•  There is a linear time algorithm to compute this.
–  Check if Y is in X+

•  Does F = {A → B, B → C, C D → E } imply A → E?
–  i.e, is A → E in the closure F+? Equivalently, is E in A+?

3

Computing X+

•  Input F (a set of FDs), and X (a set of
attributes)

•  Output: Result=X+ (under F)

•  Method:
– Step 1: Result :=X;
– Step 2: Take Y → Z in F, and Y is in Result, do:

 Result := Result ∪ Z
– Repeat step 2 until Result cannot be changed and

then output Result.

4

Example of Attribute Closure X+

•  Does F = {A → B, B → C, C D → E } imply A →
E?
–  i.e, is A → E in the closure F+? Equivalently, is E in A+?

Step 1: Result = A
Step 2: Consider A → B, Result = AB
 Consider B → C, Result = ABC

 Consider CD → E, CD is not in ABC, so stop
Step 3: A+ = {ABC}
 E is NOT in A+, so A → E is NOT in F+

5

Example of computing X+

 F = {A →B, AC →D, AB →C}?

 What is X+ for X = A? (i.e. what is the attribute

closure for A?)

 Answer: A+ = ABCD

6

Example of Attribute Closure

R = (A, B, C, G, H, I)
F = {A → B; A → C; CG → H; CG → I; B → H}

•  (AG)+ = ?

–  Answer: ABCGHI
•  Is AG a candidate key?

–  This question involves two parts:
1.  Is AG a super key?

–  Does AG → R? == Is (AG)+ ⊇ R

2.  Is any subset of AG a superkey?
–  Does A → R? == Is (A)+ ⊇ R
–  Does G → R? == Is (G)+ ⊇ R

7

Uses of Attribute Closure
There are several uses of the attribute closure

algorithm:
•  Testing for superkey:

–  To test if X is a superkey, we compute X+, and check if
X+ contains all attributes of R.

•  Testing functional dependencies
–  To check if a functional dependency X → Y holds (or,

in other words, is in F+), just check if Y ⊆ X+.
–  That is, we compute X+ by using attribute closure, and

then check if it contains Y.
–  Is a simple and cheap test, and very useful

•  Computing closure of F

8

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

A B C AB AC BC ABC

A

B

C

AB

AC

BC

ABC

Attribute closure
A+=?
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

Step 1: Construct an empty matrix, with all
Possible combinations of attributes in the rows
And columns

Step 2: Compute the attribute
closures for all attribute/
combination of attributes

Step 3: Fill in the matrix using the results from Step 2

9

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

We’ll do an example on A+.

Step 1: Result = A
Step 2: Consider A → B, Result = A ∪ B = AB
 Consider B → C, Result = AB ∪ C = ABC
Step 3: A+ = {ABC}

10

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

A B C AB AC BC ABC

A √ √ √ √ √ √ √
B

C

:

Attribute closure
A+=ABC
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

Step 1: Construct an empty matrix, with all
Possible combinations of attributes in the rows
And columns

Step 2: Compute the attribute
closures for all attribute/
combination of attributes

Step 3: Fill in the matrix using the results from Step 2.
We have A+=ABC. Now fill in the row for A. Consider
the first column. Is A part of A+? Yes, so check it.
Is B part of A+? Yes, so check it… and so on.

11

Computing F+

•  Given F={ A → B, B → C}. Compute F+ (with
attributes A, B, C).

A B C AB AC BC ABC
A √ √ √ √ √ √ √
B √ √ √
C √
AB √ √ √ √ √ √ √
AC √ √ √ √ √ √ √
BC √ √ √
ABC √ √ √ √ √ √ √

Attribute closure

A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

•  An entry with √ means FD (the row) → (the column) is in F+.
•  An entry gets √ when (the column) is in (the row)+

12

Computing F+

A B C AB AC BC ABC
A √ √ √ √ √ √ √
B √ √ √
C √
AB √ √ √ √ √ √ √
AC √ √ √ √ √ √ √
BC √ √ √
ABC √ √ √ √ √ √ √

Attribute closure

A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

•  An entry with √ means FD (the row) → (the column) is in F+.
•  An entry gets √ when (the column) is in (the row)+

A→BC Step 4: Derive rules.

13

Check if two sets of FDs are
equivalent

•  Two sets of FDs are equivalent if they logically
imply the same set of FDs.
–  i.e., if F1

+ = F2
+, then they are equivalent.

•  For example, F1={A →B, A →C} is equivalent to
F2={A → BC}

•  How to test? Two steps:
–  Every FD in F1 is in F2

+

–  Every FD in F2 is in F1
+

•  These two steps can use the algorithm (many
times) for X+

14

Summary
•  Constraints give rise to redundancy

–  Three anomalies
•  FD is a “popular” type of constraint

–  Satisfaction & violation
–  Logical implication
–  Reasoning

•  Armstrong’s Axioms
–  FD inference/derivation

•  Computing the closure of FD’s (F+)
•  Check for existence of an FD

–  By computing the Attribute closure

15

Normal Forms
•  The first question: Is any refinement needed?
•  Normal forms:

–  If a relation is in a certain normal form (BCNF, 3NF etc.), it
is known that certain kinds of problems are avoided/
minimized. This can be used to help us decide whether
decomposing the relation will help.

•  Role of FDs in detecting redundancy:
–  Consider a relation R with 3 attributes, ABC.

•  No FDs hold: There is no redundancy here.
•  Given A → B: Several tuples could have the same A value, and if

so, they’ll all have the same B value!

16

Normal Forms
•  First normal form (1NF)

–  Every field must contain atomic values, i.e. no sets or lists.
–  Essentially all relations are in this normal form

•  Second normal form (2NF)
–  Any relation in 2NF is also in 1NF
–  All the non-key attributes must depend upon the WHOLE of

the candidate key rather than just a part of it.
•  It is only relevant when the key is composite, i.e., consists of several

fields.
–  e.g. Consider a relation:

•  Inventory(part, warehouse, quantity, warehouse_address).
•  Suppose {part, warehouse} is a candidate key.
•  warehouse_address depends upon warehouse alone - 2NF violation
•  Solution: decompose

17

Normal Forms

•  Boyce-Codd Normal Form (BCNF)
–  Any relation in BCNF is also in 2NF

•  Third normal form (3NF)
–  Any relation in BCNF is also in 3NF

Boyce-Codd Normal Form (BCNF)
•  Reln R with FDs F is in BCNF if for each non-trivial FD

X → A in F , X is a super key for R (i.e., X → R in F+).
–  An FD X → A is said to be “trivial” if A ∈ X.
–  However if not all XA are in R, then we don’t care.

•  In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.

•  If BCNF:
–  No “data” in R can be predicted using FDs alone. Why:
–  Because X is a (super)key, we can’t have two
 different tuples that agree on the X value

X Y A

x y1 a
x y2 ?

Suppose we know that this instance satisfies X → A. This situation
cannot arise if the relation is in BCNF.

19

BCNF
•  Consider relation R with FDs F. If X → A in F

over R violates BCNF, it means
–  XA are all in R, and
–  A is not in X, and → non-trivial FD
–  X → R is not in F+ → X is not a superkey

•  In other words, for X → A in F over R to satisfy
BCNF requirement, at least one of the followings
must be true:
–  XA are not all in R, or
–  X → A is trivial, i.e. A is in X, or
–  X is a superkey, i.e. X → R is in F+

20

Decomposition of a Relation Schema
•  When a relation schema is not in BCNF: decompose.
•  Suppose that relation R contains attributes A1 ... An. A

decomposition of R consists of replacing R by two or more
relations such that:

–  Each new relation scheme contains a subset of the attributes of R
(and no attributes that do not appear in R), and

–  Every attribute of R appears as an attribute of at least one of the new
relations.

•  Intuitively, decomposing R means we will store instances of
the relation schemes produced by the decomposition,
instead of instances of R.

21

Decomposition example

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

=

Original relation
(not stored in DB!)

Decomposition
(in the DB)

22

Problems with Decompositions
•  There are three potential problems to consider:
  Some queries become more expensive.

•  e.g., How much did sailor Attishoo earn? (earn = W*H)
  Given instances of the decomposed relations, we may not be

able to reconstruct the corresponding instance of the original
relation!

•  Fortunately, not in the SNLRWH example.
  Checking some dependencies may require joining the

instances of the decomposed relations.
•  Fortunately, not in the SNLRWH example.

•  Tradeoff: Must consider these issues vs. redundancy.

23

Example of problem 2
Student_ID Name Dcode Cno Grade
123-22-3666 Attishoo INFS 501 A
231-31-5368 Guldu CS 102 B
131-24-3650 Smethurst INFS 614 B
434-26-3751 Guldu INFS 614 A
434-26-3751 Guldu INFS 612 C

Name Dcode Cno Grade
Attishoo INFS 501 A
Guldu CS 102 B
Smethurst INFS 614 B
Guldu INFS 614 A
Guldu INFS 612 C

Student_ID Name
123-22-3666 Attishoo
231-31-5368 Guldu
131-24-3650 Smethurst
434-26-3751 Guldu



≠

