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Reasoning About FDs  (Contd.) 

•  Computing the closure of a set of FDs can be expensive.  
(Size of closure is exponential in # of attrs!) 

•  Typically, we just want to check if a given FD X →Y is in 
the closure of a set of FDs F.  An efficient check: 

–  Compute attribute closure of X (denoted X+) wrt F: 
•  Set of all attributes Z such that X → Z is in F+ 

•  There is a linear time algorithm to compute this.  
–  Check if Y is in X+ 

•  Does F = {A → B,  B → C,  C D → E }  imply  A → E? 
–  i.e,  is  A → E  in the closure F+?  Equivalently, is E in A+?  
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Computing X+ 

•  Input F (a set of FDs), and X (a set of 
attributes) 

•  Output: Result=X+ (under F) 

•  Method: 
– Step 1: Result :=X; 
– Step 2: Take Y → Z in F, and Y is in Result, do: 

             Result := Result ∪ Z 
– Repeat step 2 until Result cannot be changed and 

then output Result. 
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Example of Attribute Closure X+ 

•  Does F = {A → B,  B → C,  C D → E }  imply  A → 
E? 
–  i.e,  is  A → E  in the closure F+?  Equivalently, is E in A+?  

Step 1: Result = A 
Step 2: Consider A → B, Result = AB 
            Consider B → C, Result = ABC 

 Consider CD → E, CD is not in ABC, so stop 
Step 3: A+ = {ABC} 
            E is NOT in A+, so A → E is NOT in F+ 
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Example of computing X+ 

 F = {A →B, AC →D, AB →C}? 
 
   What is X+ for X = A? (i.e. what is the attribute 

closure for A?) 
 
 
    Answer: A+ = ABCD 
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Example of Attribute Closure 

R = (A, B, C, G, H, I) 
F = {A → B; A → C; CG → H; CG → I; B → H} 
 
•  (AG)+ = ?                            

–  Answer: ABCGHI 
•  Is AG a candidate key?  

–  This question involves two parts:  
1.  Is AG a super key? 

–  Does AG → R? == Is (AG)+ ⊇ R 

2.  Is any subset of AG a superkey? 
–  Does A → R? == Is (A)+ ⊇ R 
–  Does G → R? == Is (G)+ ⊇ R 
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Uses of Attribute Closure 
There are several uses of the attribute closure 

algorithm: 
•  Testing for superkey: 

–  To test if X is a superkey, we compute X+, and check if 
X+ contains all attributes of R. 

•  Testing functional dependencies 
–  To check if a functional dependency X → Y holds (or, 

in other words, is in F+), just check if Y ⊆ X+.  
–  That is, we compute X+ by using attribute closure, and 

then check if it contains Y.  
–  Is a simple and cheap test, and very useful 

•  Computing closure of F 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

A B C AB AC BC ABC 

A 

B 

C 

AB 

AC 

BC 

ABC 

Attribute closure 
A+=? 
B+=? 
C+=? 
AB+=? 
AC+=? 
BC+=? 
ABC+=? 

Step 1: Construct an empty matrix, with all  
Possible combinations of attributes in the rows 
And columns 

Step 2: Compute the attribute 
closures for all attribute/
combination of attributes 

Step 3: Fill in the matrix using the results from Step 2 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

We’ll do an example on A+. 
 
 
 

Step 1: Result = A 
Step 2: Consider A → B, Result = A ∪ B = AB 
            Consider B → C, Result = AB ∪ C = ABC 
Step 3: A+ = {ABC} 

  
 



10 

Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

A B C AB AC BC ABC 

A √ √ √ √ √ √ √ 
B 

C 

: 

Attribute closure 
A+=ABC 
B+=? 
C+=? 
AB+=? 
AC+=? 
BC+=? 
ABC+=? 

Step 1: Construct an empty matrix, with all  
Possible combinations of attributes in the rows 
And columns 

Step 2: Compute the attribute 
closures for all attribute/
combination of attributes 

Step 3: Fill in the matrix using the results from Step 2. 
We have A+=ABC. Now fill in the row for A. Consider 
the first column. Is A part of A+? Yes, so check it.  
Is B part of A+? Yes, so check it… and so on. 
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Computing F+ 

•  Given F={ A → B, B → C}. Compute F+ (with 
attributes A, B, C). 

A B C AB AC BC ABC 
A √ √ √ √ √ √ √ 
B √ √ √ 
C √ 
AB √ √ √ √ √ √ √ 
AC √ √ √ √ √ √ √ 
BC √ √ √ 
ABC √ √ √ √ √ √ √ 

Attribute closure 

A+=ABC 
B+=BC 
C+=C 
AB+=ABC 
AC+=ABC 
BC+=BC 
ABC+=ABC 

•  An entry with √ means FD (the row) → (the column) is in F+. 
•  An entry gets √ when (the column) is in (the row)+ 
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Computing F+ 

A B C AB AC BC ABC 
A √ √ √ √ √ √ √ 
B √ √ √ 
C √ 
AB √ √ √ √ √ √ √ 
AC √ √ √ √ √ √ √ 
BC √ √ √ 
ABC √ √ √ √ √ √ √ 

Attribute closure 

A+=ABC 
B+=BC 
C+=C 
AB+=ABC 
AC+=ABC 
BC+=BC 
ABC+=ABC 

•  An entry with √ means FD (the row) → (the column) is in F+. 
•  An entry gets √ when (the column) is in (the row)+ 

A→BC Step 4: Derive rules. 
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Check if two sets of FDs are 
equivalent 

•  Two sets of FDs are equivalent if they logically 
imply the same set of FDs. 
–  i.e., if F1

+ = F2
+, then they are equivalent. 

•  For example, F1={A →B, A →C} is equivalent to 
F2={A → BC} 

•  How to test? Two steps: 
–  Every FD in F1 is in F2

+ 

–  Every FD in F2 is in F1
+ 

•  These two steps can use the algorithm (many 
times) for X+ 
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Summary 
•  Constraints give rise to redundancy 

–  Three anomalies 
•  FD is a “popular” type of constraint 

–  Satisfaction & violation 
–  Logical implication 
–  Reasoning 

•  Armstrong’s Axioms 
–  FD inference/derivation 

•  Computing the closure of FD’s (F+) 
•  Check for existence of an FD 

–  By computing the Attribute closure 
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Normal Forms 
•  The first question: Is any refinement needed? 
•  Normal forms: 

–  If a relation is in a certain normal form (BCNF, 3NF etc.), it 
is known that certain kinds of problems are avoided/
minimized.  This can be used to help us decide whether 
decomposing the relation will help. 

•  Role of FDs in detecting redundancy: 
–  Consider a relation R with 3 attributes, ABC.   

•  No FDs hold:   There is no redundancy here. 
•  Given A → B:   Several tuples could have the same A value, and if 

so, they’ll all have the same B value! 
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Normal Forms 
•  First normal form (1NF) 

–  Every field must contain atomic values, i.e. no sets or lists. 
–  Essentially all relations are in this normal form 

•  Second normal form (2NF) 
–  Any relation in 2NF is also in 1NF 
–  All the non-key attributes must depend upon the WHOLE of 

the candidate key rather than just a part of it. 
•  It is only relevant when the key is composite, i.e., consists of several 

fields. 
–  e.g. Consider a relation: 

•  Inventory(part, warehouse, quantity, warehouse_address).  
•  Suppose {part, warehouse} is a candidate key. 
•  warehouse_address depends upon warehouse alone - 2NF violation 
•  Solution: decompose 



17 

Normal Forms 

•  Boyce-Codd Normal Form (BCNF) 
–  Any relation in BCNF is also in 2NF 

•  Third normal form (3NF) 
–  Any relation in BCNF is also in 3NF 



Boyce-Codd Normal Form  (BCNF) 
•  Reln R with FDs F is in BCNF if for each non-trivial FD  

X → A  in F , X is a super key for R (i.e., X → R  in F+). 
–  An FD X → A is said to be “trivial” if A ∈ X. 
–  However if not all XA are in R, then we don’t care. 

•  In other words, R is in BCNF if the only non-trivial FDs 
that hold over R are key constraints.  

•  If BCNF: 
–  No “data” in R can be predicted using FDs alone. Why: 
–  Because X is a (super)key, we can’t have two  
   different tuples that agree on the X value 
 

X Y A 

x y1 a 
x y2 ? 

 

 

Suppose we know that this instance satisfies X → A. This situation 
cannot arise if the relation is in BCNF.  
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BCNF 
•  Consider relation R with FDs F.  If X → A in F 

over R violates BCNF, it means 
–  XA are all in R, and 
–  A is not in X, and   → non-trivial FD 
–  X → R is not in F+   → X is not a superkey 

•  In other words, for X → A in F over R to satisfy 
BCNF requirement, at least one of the followings 
must be true: 
–  XA are not all in R, or 
–  X → A  is trivial, i.e. A is in X, or    
–  X is a superkey, i.e. X → R is in F+    
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Decomposition of a Relation Schema 
•  When a relation schema is not in BCNF: decompose. 
•  Suppose that relation R contains attributes A1 ... An.  A 

decomposition of R consists of replacing R by two or more 
relations such that: 

–  Each new relation scheme contains a subset of the attributes of R 
(and no attributes that do not appear in R), and 

–  Every attribute of R appears as an attribute of at least one of the new 
relations. 

•  Intuitively, decomposing R means we will store instances of 
the relation schemes produced by the decomposition, 
instead of instances of R. 
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Decomposition example 

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 

 

 

R W 
8 10 
5 7 

 

 

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

 

=

Original relation 
(not stored in DB!) 

Decomposition 
(in the DB) 
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Problems with Decompositions 
•  There are three potential problems to consider: 
  Some queries become more expensive.   

•  e.g.,  How much did sailor Attishoo earn?  (earn = W*H) 
  Given instances of the decomposed relations, we may not be 

able to reconstruct the corresponding instance of the original 
relation! 

•  Fortunately, not in the SNLRWH example. 
  Checking some dependencies may require joining the 

instances of the decomposed relations. 
•  Fortunately, not in the SNLRWH example. 

•  Tradeoff:   Must consider these issues vs. redundancy. 
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Example of problem 2 
Student_ID Name Dcode Cno Grade 
123-22-3666 Attishoo INFS 501 A 
231-31-5368 Guldu CS 102 B 
131-24-3650 Smethurst INFS 614 B 
434-26-3751 Guldu INFS 614 A 
434-26-3751 Guldu INFS 612 C 

 

 

Name Dcode Cno Grade 
Attishoo INFS 501 A 
Guldu CS 102 B 
Smethurst INFS 614 B 
Guldu INFS 614 A 
Guldu INFS 612 C 

 

 

Student_ID Name 
123-22-3666 Attishoo 
231-31-5368 Guldu 
131-24-3650 Smethurst 
434-26-3751 Guldu 

 

 



≠


