CS 450

Schema Refinement & Normalization Theory

Functional Dependencies

What's the Problem

- Consider relation obtained (call it SNLRHW) Hourly_Emps(<u>ssn, name, lot, rating, hrly_wage, hrs_worked</u>)
- What if we *know* rating determines hrly_wage?

S	Ν	L	R	W	Η
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Redundancy

- When part of data can be derived from other parts, we say *redundancy* exists.
 - Example: the hrly_wage of Smiley can be derived from the hrly_wage of Attishoo because they have the same rating and we know rating determines hrly_wage.
- Redundancy exists because of the existence of *integrity constraints* (e.g., FD: $R \rightarrow W$).

What's the problem, again

- <u>Update anomaly</u>: Can we change W in just the 1st tuple of SNLRWH?
- *Insertion anomaly*: What if we want to insert an employee and don't know the hourly wage for his rating?
- *Deletion anomaly*: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

What do we do?

- Since constraints, in particular *functional dependencies*, cause problems, we need to study them, and understand when and how they cause redundancy.
- When redundancy exists, refinement is needed.
 - Main refinement technique: <u>decomposition</u> (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Decomposition

S	N	L	R	W	Η
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Η
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W	
8	10	
5	7	

 $\triangleright \lhd$

6

Refining an ER Diagram

- 1st diagram translated: Employee(<u>S</u>,N,L,D,S2) Department(D,M,B)
 - Lots associated with employees.

- Suppose all employees in a dept are assigned the same <u>After</u>:
 lot: D → L
- Can fine-tune this way: Employees(S,N,D,S2) Department(D,M,B,L)

Functional Dependencies (FDs)

- A <u>functional dependency</u> (FD) has the form: $X \rightarrow Y$, where X and Y are two *sets* of attributes.
 - Examples: rating \rightarrow hrly_wage, AB \rightarrow C
- The FD $X \rightarrow Y$ is satisfied by a relation instance r if:
 - for each pair of tuples t1 and t2 in r: t1.X = t2.X implies t1.Y = t2.Y
 - i.e., given any two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y are *sets* of attributes.)
- Convention: X, Y, Z etc denote sets of attributes, and A, B, C, etc denote attributes.

Functional Dependencies (FDs)

- *The FD holds* over relation name R if, for every *allowable* instance *r* of R, *r* satisfies the FD.
- An FD, as an integrity constraint, is a statement about *all* allowable relation instances.
 - Must be identified based on semantics of application.
 - Given some instance *r1* of R, we can check if it *violates* some FD *f* or not
 - But we cannot tell if *f* holds over R by looking at an instance!
 - Cannot prove non-existence (of violation) out of ignorance
 - This is the same for all integrity constraints!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wage, hrs_worked)
- <u>Notation</u>: We will denote this relation schema by listing the attributes: <u>SNLRWH</u>
 - This is really the *set* of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - *ssn* is the key: $S \rightarrow SNLRWH$
 - rating determines $hrly_wage: R \rightarrow W$

One more example

А	В	С
1	1	2
1	1	3
2	1	3
2	1	2

How many *possible* FDs totally on this relation instance?

FDs with A as the left side:	Satisfied by the relation instance?
A→A	yes
A→B	yes
A→C	No
A→AB	yes
A→AC	No
A→BC	No
A→ABC	No 11

Violation of FD by a relation

- The FD X→Y is NOT satisfied by a *relation instance r if:*
 - There exists a pair of tuples t1 and t2 in r such that

t1.X = t2.X but $t1.Y \neq t2.Y$

i.e., we can find two tuples in *r*, such that X values agree, but Y values don't.

Some other FDs

А	В	С
1	1	2
1	1	3
2	1	3
2	1	2

FD	Satisfied by the relation instance?
C→B	yes
C→AB	No
B→C	No
B→B	Yes
AC →B	Yes [note!]
•••	

Relationship between FDs and Keys

- Given R(A, B, C).
 - $-A \rightarrow ABC$ means that A is a key.
- In general,
 - $X \rightarrow R$ means X is a (super)key.

Reasoning About FDs

• Given some FDs, we can usually infer additional FDs:

 $-ssn \rightarrow did, did \rightarrow lot \text{ implies } ssn \rightarrow lot$

 $-A \rightarrow BC \text{ implies } A \rightarrow B$

• An FD f is *logically implied by* a set of FDs F if f holds whenever all FDs in F hold.

- $F^+ = closure of F$ is the set of all FDs that are implied by *F*.

Armstrong's axioms

- Armstrong's axioms are *sound* and *complete* inference rules for FDs!
 - Sound: all the derived FDs (by using the axioms) are those logically implied by the given set
 - Complete: all the logically implied (by the given set) FDs can be derived by using the axioms.

Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs?
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - <u>Reflexivity</u>:

• If $X \supseteq Y$, then $X \rightarrow Y$

- Augmentation:
 - If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- <u>Transitivity</u>:

• If $X \to Y$ and $Y \to Z$, then $X \to Z$

Α	В	С
1	1	2
2	1	3
2	1	3
1	1	2

Example of using Armstrong's Axioms

- Couple of additional rules (that follow from AA):
 - *Union*: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - *Decomposition*: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Derive the above two by using Armstrong's axioms!

Derive Union

• Show that

If $X \to Y$ and $X \to Z$, then $X \to YZ$

 $X \rightarrow YX$ (augment)// Append X on both sides of $X \rightarrow Y$ $YX \rightarrow YZ$ (augment)// Append Y on both sides of $X \rightarrow Z$

Thus, $X \rightarrow YZ$ (transitive)

Derive Decomposition

• Show that

If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

 $YZ \rightarrow Y; YZ \rightarrow Z$ (reflexive) Thus, $X \rightarrow Y, X \rightarrow Z$ (transitive)

Another Useful Rule: Accumulation Rule

• If $X \rightarrow YZ$ and $Z \rightarrow W$, then $X \rightarrow YZW$

From $Z \rightarrow W$, augment with YZ to get $YZ \rightarrow YZW$ Thus, $X \rightarrow YZW$ (transitive)

Derivation Example

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B; A \rightarrow C; CG \rightarrow H; CG \rightarrow I; B \rightarrow H\}$
- some members of F^+ (how to derive them?)

 $- A \rightarrow H$

By transitivity from $A \rightarrow B$ and $B \rightarrow H$

 $-AG \rightarrow I$

By augmenting $A \rightarrow C$ with G, to get AG $\rightarrow CG$, and then transitivity with CG $\rightarrow I$

 $-CG \rightarrow HI$

By augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity (or use union rule)

22

Procedure for Computing F⁺

• To compute the closure of a set of functional dependencies F:

 $F^{+} = F$ repeat
for each functional dependency f in F^{+} apply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^{+} for each pair of functional dependencies f_{1} and f_{2} in F^{+} if f_{1} and f_{2} can be combined using transitivity
then add the resulting functional dependency to F^{+} until F^{+} does not change any further

NOTE: We shall see an alternative procedure for this task later

Example on Computing F+

- $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E \}$
- Step 1: For each f in F, apply reflexivity rule
 - We get: $CD \rightarrow C$; $CD \rightarrow D$
 - Add them to F:

• $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E; CD \rightarrow C; CD \rightarrow D \}$

- Step 2: For each f in F, apply augmentation rule
 - From A → B we get: A → AB; AB → B; AC → BC; AD → BD; ABC → BC; ABD → BD; ACD → BCD
 - From B → C we get: AB → AC; BC → C; BD → CD; ABC → AC; ABD → ACD, etc etc.
- Step 3: Apply transitivity on pairs of f's
- Keep repeating... You get the idea