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What’s the Problem 
•  Consider relation obtained (call it SNLRHW) 

Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked) 

•  What if we know rating determines hrly_wage? 

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40
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Redundancy 

•  When part of data can be derived from other 
parts, we say redundancy exists. 
– Example: the hrly_wage of Smiley can be 

derived from the hrly_wage of Attishoo 
because they have the same rating and we know 
rating determines hrly_wage. 

•  Redundancy exists because of the existence 
of integrity constraints (e.g., FD: R→ W). 
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What’s the problem, again 

•  Update anomaly:  Can we change W in just 
the 1st  tuple of SNLRWH? 

•  Insertion anomaly:  What if we want to 
insert an employee and don’t know the 
hourly wage for his rating? 

•  Deletion anomaly: If we delete all 
employees with rating 5, we lose the 
information about the wage for rating 5!   
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What do we do? 
•  Since constraints, in particular functional 

dependencies, cause problems, we need to study 
them, and understand when and how they cause 
redundancy. 

•  When redundancy exists, refinement is needed. 
–  Main refinement technique:  decomposition (replacing 

ABCD with, say, AB and BCD, or ACD and ABD). 
•  Decomposition should be used judiciously: 

–  Is there reason to decompose a relation? 
–  What problems (if any) does the decomposition cause? 
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Decomposition 

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 
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Refining an ER Diagram 

•  1st diagram translated:           
Employee(S,N,L,D,S2)       
Department(D,M,B) 
–  Lots associated with 

employees. 

•  Suppose all employees in a 
dept are assigned the same 
lot:   D       L 

•  Can fine-tune this way: 
Employees(S,N,D,S2) 
Department(D,M,B,L)  

→

Before: 

After: 

Employee 
ssn 
name 
lot 

Works_In 
Department 
did 
dname 
budget 

since 

Employee 
ssn 
name 

Works_In 

Department 
did 
dname 
budget 
lot 

since 
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Functional Dependencies (FDs) 
•  A functional dependency (FD) has the form: X→Y, 

where X and Y are two sets of attributes. 
–  Examples: rating→hrly_wage, AB →C 

•  The FD X→Y is satisfied by a relation instance r if: 
–  for each pair of tuples t1 and t2 in r: 

t1.X = t2.X  implies t1.Y =t2.Y 
–  i.e., given any two tuples in r, if the X values agree, then the Y 

values must also agree.  (X and Y are sets of attributes.) 

•  Convention: X, Y, Z etc denote sets of attributes, and A, 
B, C, etc denote attributes. 
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Functional Dependencies (FDs) 
•  The FD holds over relation name R if, for every 

allowable instance r of R, r satisfies the FD. 
•  An FD, as an integrity constraint, is a statement 

about all allowable relation instances. 
–  Must be identified based on semantics of application. 
–  Given some instance r1 of R, we can check if it violates 

some FD f or not 
–  But we cannot tell if f holds over R by looking at an 

instance! 
•  Cannot prove non-existence (of violation) out of ignorance 

–  This is the same for all integrity constraints! 
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Example:  Constraints on Entity Set 
•  Consider relation obtained from Hourly_Emps: 

–  Hourly_Emps (ssn, name, lot, rating, hrly_wage, 
hrs_worked) 

•  Notation:  We will denote this relation schema by 
listing the attributes:   SNLRWH 
–  This is really the set of attributes {S,N,L,R,W,H}. 
–  Sometimes, we will refer to all attributes of a relation by 

using the relation name.  (e.g., Hourly_Emps for SNLRWH) 
•  Some FDs on Hourly_Emps: 

–  ssn is the key:    S → SNLRWH  
–  rating determines hrly_wage:    R → W 
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One more example 

A B C 
1 1 2 
1 1 3 
2 1 3 
2 1 2 

How many possible 
FDs totally on this  
relation instance? 
      

FDs with A as 
the left side: 

Satisfied by 
the relation 
instance? 

A→A yes 
A→B yes 
A→C No 
A→AB yes 
A→AC No 
A→BC No 
A→ABC No 
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Violation of FD by a relation 

•  The FD X→Y is NOT satisfied by a 
relation instance r if: 
– There exists a pair of tuples t1 and t2 in r such 

that 
t1.X = t2.X  but t1.Y  ≠ t2.Y 

–  i.e., we can find two tuples in r, such that X 
values agree, but Y values don’t. 
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Some other FDs 

A B C 
1 1 2 
1 1 3 
2 1 3 
2 1 2 

FD Satisfied by 
the relation 
instance? 

C→B yes 
C→AB No 
B→C No 
B→B Yes 
AC →B Yes [note!] 
… … 
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Relationship between FDs and Keys 
•  Given R(A, B, C). 

– A→ABC means that A is a key. 
•  In general, 

– X → R means X is a (super)key. 

•  How about key constraint? 
–  ssn → did 

Employee 
ssn 
name 
lot 

Works_In 
Department 
did 
dname 
budget 

since 
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Reasoning About FDs 
•  Given some FDs, we can usually infer 

additional FDs: 
–  ssn→ did,  did → lot    implies    ssn→ lot 
–  A → BC implies A → B 

•  An FD f is logically implied by a set of FDs 
F if f  holds whenever all FDs in F hold. 
–  F+ = closure of F is the set of all FDs that are 

implied by F. 
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Armstrong’s axioms 

•  Armstrong’s axioms are sound and 
complete inference rules for FDs! 
– Sound: all the derived FDs (by using the 

axioms) are those logically implied by the 
given set 

– Complete: all the logically implied (by the 
given set) FDs can be derived by using the 
axioms. 
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Reasoning about FDs 
•  How do we get all the FDs that are logically 

implied by a given set of FDs? 
•  Armstrong’s Axioms (X, Y, Z are sets of 

attributes): 
–  Reflexivity:   

•  If  X ⊇ Y,  then   X → Y  
–  Augmentation:   

•  If  X → Y,  then   XZ → YZ   for any Z 
–  Transitivity:   

•  If  X → Y  and  Y → Z,  then   X → Z 

A B C 
1 1 2 
2 1 3 
2 1 3 
1 1 2 
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Example of using Armstrong’s 
Axioms 

•  Couple of additional rules (that follow from 
AA): 
–  Union:   If X → Y  and  X → Z,   then  X → 

YZ 
–  Decomposition:  If X → YZ,  then X → Y and  

X → Z 
•  Derive the above two by using Armstrong’s 

axioms! 
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Derive Union 

•  Show that  
  
 If X → Y  and  X → Z,   then  X → YZ 

 
 X → YX (augment)  // Append X on both sides of X → Y 
 YX → YZ (augment)  // Append Y on both sides of X → Z 

 
    Thus, X → YZ (transitive) 
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Derive Decomposition 

•  Show that 
  
 If X → YZ,  then X → Y and  X → Z 

 
 YZ → Y; YZ → Z  (reflexive) 
 Thus, X → Y, X → Z  (transitive) 

 



21 

Another Useful Rule:  
Accumulation Rule 

•  If X → YZ and Z → W, then X →YZW 

 
From Z → W, augment with YZ to get YZ → YZW 
Thus, X → YZW (transitive) 
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Derivation Example 

•  R = (A, B, C, G, H, I) 
F = {A → B; A → C; CG → H; CG → I; B → H } 

•  some members of F+ (how to derive them?) 
–  A → H         

By transitivity from A → B and B → H 
 

–  AG → I        
 By augmenting A → C with G, to get AG → CG, and then transitivity 

with CG → I 

–  CG → HI  
 By augmenting CG → I to infer CG → CGI, and augmenting CG → H 

to infer CGI → HI, and then transitivity (or use union rule)     
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Procedure for Computing F+ 

•  To compute the closure of a set of functional dependencies F: 
    F + = F 

repeat 
 for each functional dependency f in F+ 

        apply reflexivity and augmentation rules on f 
        add the resulting functional dependencies to F + 

 for each pair of functional dependencies f1and f2 in F + 

        if f1 and f2 can be combined using transitivity 
   then add the resulting functional dependency to F + 

until F + does not change any further 
 

 NOTE:  We shall see an alternative procedure for this task later  
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Example on Computing F+ 
•  F = {A → B,  B → C,  C D → E } 
•  Step 1: For each f in F, apply reflexivity rule 

–  We get: CD → C; CD → D 
–  Add them to F:  

•  F = {A → B,  B → C,  C D → E; CD → C; CD → D } 

•  Step 2: For each f in F, apply augmentation rule 
–  From A → B we get: A →  AB; AB → B; AC → BC; AD 
→ BD; ABC →BC; ABD → BD; ACD →BCD 

–  From B → C we get: AB → AC; BC → C; BD → CD; 
ABC  → AC; ABD  → ACD, etc etc. 

•  Step 3: Apply transitivity on pairs of f’s 
•  Keep repeating… You get the idea  


