CS 450

Schema Refinement \& Normalization Theory

Functional Dependencies

What's the Problem

- Consider relation obtained (call it SNLRHW)

Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked)

- What if we know rating determines hrly_wage?

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
$612-67-4134$	Madayan	35	8	10	40

Redundancy

- When part of data can be derived from other parts, we say redundancy exists.
- Example: the hrly_wage of Smiley can be derived from the hrly_wage of Attishoo because they have the same rating and we know rating determines hrly_wage.
- Redundancy exists because of the existence of integrity constraints (e.g., FD: $\boldsymbol{R} \rightarrow \boldsymbol{W}$).

What's the problem, again

- Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
- Insertion anomaly: What if we want to insert an employee and don't know the hourly wage for his rating?
- Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

What do we do?

- Since constraints, in particular functional dependencies, cause problems, we need to study them, and understand when and how they cause redundancy.
- When redundancy exists, refinement is needed.
- Main refinement technique: decomposition (replacing $A B C D$ with, say, $A B$ and $B C D$, or $A C D$ and $A B D$).
- Decomposition should be used judiciously:
- Is there reason to decompose a relation?
- What problems (if any) does the decomposition cause?

Decomposition

Refining an ER Diagram

- 1st diagram translated: Employee(S,N,L,D,S2) Department(D,M,B)
- Lots associated with employees.
- Suppose all employees in a dept are assigned the same After: lot: D \rightarrow L
- Can fine-tune this way: Employees(S,N,D,S2) Department(D,M,B,L)

Functional Dependencies (FDs)

- A functional dependency (FD) has the form: $\mathrm{X} \rightarrow \mathrm{Y}$, where X and Y are two sets of attributes.
- Examples: rating \rightarrow hrly_wage, $\mathrm{AB} \rightarrow \mathrm{C}$
- The FD $\mathrm{X} \rightarrow \mathrm{Y}$ is satisfied by a relation instance r if:
- for each pair of tuples t 1 and t 2 in r :

$$
t 1 . X=t 2 . X \text { implies } t 1 . Y=t 2 . Y
$$

- i.e., given any two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)
- Convention: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ etc denote sets of attributes, and A , B, C, etc denote attributes.

Functional Dependencies (FDs)

- The FD holds over relation name R if, for every allowable instance r of R, r satisfies the FD.
- An FD, as an integrity constraint, is a statement about all allowable relation instances.
- Must be identified based on semantics of application.
- Given some instance $r l$ of R, we can check if it violates some FD f or not
- But we cannot tell if fholds over R by looking at an instance!
- Cannot prove non-existence (of violation) out of ignorance
- This is the same for all integrity constraints!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
- Hourly_Emps (ssn, name, lot, rating, hrly_wage, hrs_worked)
- Notation: We will denote this relation schema by listing the attributes: SNLRWH
- This is really the set of attributes $\{\mathrm{S}, \mathrm{N}, \mathrm{L}, \mathrm{R}, \mathrm{W}, \mathrm{H}\}$.
- Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
- ssn is the key: $\mathrm{S} \rightarrow$ SNLRWH
- rating determines hrly_wage: $\mathrm{R} \rightarrow \mathrm{W}$

One more example

A	B	C
1	1	2
1	1	3
2	1	3
2	1	2

How many possible FDs totally on this relation instance?

FDs with A as the left side:	Satisfied by the relation instance?
$\mathrm{A} \rightarrow \mathrm{A}$	yes
$\mathrm{A} \rightarrow \mathrm{B}$	yes
$\mathrm{A} \rightarrow \mathrm{C}$	No
$\mathrm{A} \rightarrow \mathrm{AB}$	yes
$\mathrm{A} \rightarrow \mathrm{AC}$	No
$\mathrm{A} \rightarrow \mathrm{BC}$	No
$\mathrm{A} \rightarrow \mathrm{ABC}$	No

Violation of FD by a relation

- The FD X $\rightarrow \mathrm{Y}$ is NOT satisfied by a relation instance rif:
- There exists a pair of tuples t 1 and t 2 in r such that

$$
t 1 . X=t 2 . X \text { but } t 1 . Y \neq t 2 . Y
$$

- i.e., we can find two tuples in r, such that X values agree, but Y values don't.

Some other FDs

FD	Satisfied by the relation instance?
$\mathrm{C} \rightarrow \mathrm{B}$	yes
$\mathrm{C} \rightarrow \mathrm{AB}$	No
$\mathrm{B} \rightarrow \mathrm{C}$	No
$\mathrm{B} \rightarrow \mathrm{B}$	Yes
$\mathrm{AC} \rightarrow \mathrm{B}$	Yes [note!]
\ldots	\ldots

Relationship between FDs and Keys

- Given R(A, B, C).
$-\mathrm{A} \rightarrow \mathrm{ABC}$ means that A is a key.
- In general,
$-\mathrm{X} \rightarrow \mathrm{R}$ means X is a (super)key.
- How about key constraint?
- ssn \rightarrow did

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
- ssn \rightarrow did, did \rightarrow lot implies \quad ssn \rightarrow lot
$-A \rightarrow B C$ implies $A \rightarrow B$
- An FD f is logically implied by a set of FDs F if f holds whenever all FDs in F hold.
- $\mathrm{F}^{+}=$closure of F is the set of all FDs that are implied by F.

Armstrong's axioms

- Armstrong' s axioms are sound and complete inference rules for FDs!
- Sound: all the derived FDs (by using the axioms) are those logically implied by the given set
- Complete: all the logically implied (by the given set) FDs can be derived by using the axioms.

Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs?
- Armstrong' s Axioms (X, Y, Z are sets of attributes):
- Reflexivity:
- If $\mathrm{X} \supseteq \mathrm{Y}$, then $\mathrm{X} \rightarrow \mathrm{Y}$
- Augmentation:
- If $\mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{XZ} \rightarrow \mathrm{YZ}$ for any Z
- Transitivity:
- If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{Z}$

A	B	C
1	1	2
2	1	3
2	1	3
1	1	2

Example of using Armstrong's Axioms

- Couple of additional rules (that follow from AA):
- Union: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow$ YZ
- Decomposition: If $\mathrm{X} \rightarrow \mathrm{YZ}$, then $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$
- Derive the above two by using Armstrong' s axioms!

Derive Union

- Show that

If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{YZ}$
$\mathrm{X} \rightarrow \mathrm{YX}$ (augment) $\quad / /$ Append X on both sides of $\mathrm{X} \rightarrow \mathrm{Y}$ $\mathrm{YX} \rightarrow \mathrm{YZ}$ (augment) // Append Y on both sides of $\mathrm{X} \rightarrow \mathrm{Z}$

Thus, $\mathrm{X} \rightarrow \mathrm{YZ}$ (transitive)

Derive Decomposition

- Show that

If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
$\mathrm{YZ} \rightarrow \mathrm{Y} ; \mathrm{YZ} \rightarrow \mathrm{Z} \quad$ (reflexive)
Thus, $\mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \rightarrow \mathrm{Z}$ (transitive)

Another Useful Rule: Accumulation Rule

- If $\mathrm{X} \rightarrow \mathrm{YZ}$ and $\mathrm{Z} \rightarrow \mathrm{W}$, then $\mathrm{X} \rightarrow \mathrm{YZW}$

From $\mathrm{Z} \rightarrow \mathrm{W}$, augment with YZ to get $\mathrm{YZ} \rightarrow \mathrm{YZW}$ Thus, $\mathrm{X} \rightarrow \mathrm{YZW}$ (transitive)

Derivation Example

- $R=(A, B, C, G, H, I)$ $F=\{A \rightarrow B ; A \rightarrow C ; C G \rightarrow H ; C G \rightarrow I ; B \rightarrow H\}$
- some members of F^{+}(how to derive them?)
- $A \rightarrow H$

By transitivity from $A \rightarrow \mathrm{~B}$ and $\mathrm{B} \rightarrow \mathrm{H}$

- $A G \rightarrow I$

By augmenting $A \rightarrow \mathrm{C}$ with G , to get $\mathrm{AG} \rightarrow \mathrm{CG}$, and then transitivity with $\mathrm{CG} \rightarrow$ I

- $C G \rightarrow H I$

By augmenting $C G \rightarrow \mathrm{I}$ to infer $\mathrm{CG} \rightarrow \mathrm{CGI}$, and augmenting $\mathrm{CG} \rightarrow \mathrm{H}$ to infer CGI $\rightarrow \mathrm{HI}$, and then transitivity (or use union rule)

Procedure for Computing F^{+}

- To compute the closure of a set of functional dependencies F :

$$
F^{+}=F
$$

repeat
for each functional dependency f in F^{+} apply reflexivity and augmentation rules on f add the resulting functional dependencies to F^{+}
for each pair of functional dependencies f_{1} and f_{2} in F^{+} if f_{1} and f_{2} can be combined using transitivity then add the resulting functional dependency to F^{+}
until F^{+}does not change any further

NOTE: We shall see an alternative procedure for this task later

Example on Computing F+

- $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}\}$
- Step 1: For each f in F , apply reflexivity rule
- We get: $\mathrm{CD} \rightarrow \mathrm{C} ; \mathrm{CD} \rightarrow \mathrm{D}$
- Add them to F :
- $\mathrm{F}=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E} ; \mathrm{CD} \rightarrow \mathrm{C} ; \mathrm{CD} \rightarrow \mathrm{D}\}$
- Step 2: For each f in F, apply augmentation rule
- From $\mathrm{A} \rightarrow \mathrm{B}$ we get: $\mathrm{A} \rightarrow \mathrm{AB} ; \mathrm{AB} \rightarrow \mathrm{B} ; \mathrm{AC} \rightarrow \mathrm{BC} ; \mathrm{AD}$ $\rightarrow \mathrm{BD} ; \mathrm{ABC} \rightarrow \mathrm{BC} ; \mathrm{ABD} \rightarrow \mathrm{BD} ; \mathrm{ACD} \rightarrow \mathrm{BCD}$
- From $\mathrm{B} \rightarrow \mathrm{C}$ we get: $\mathrm{AB} \rightarrow \mathrm{AC} ; \mathrm{BC} \rightarrow \mathrm{C} ; \mathrm{BD} \rightarrow \mathrm{CD}$; $\mathrm{ABC} \rightarrow \mathrm{AC} ; \mathrm{ABD} \rightarrow \mathrm{ACD}$, etc etc.
- Step 3: Apply transitivity on pairs of f's
- Keep repeating... You get the idea

