
1

CS 450

Schema Refinement &
Normalization Theory

Functional Dependencies

2

What’s the Problem
•  Consider relation obtained (call it SNLRHW)

Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked)

•  What if we know rating determines hrly_wage?

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

3

Redundancy

•  When part of data can be derived from other
parts, we say redundancy exists.
– Example: the hrly_wage of Smiley can be

derived from the hrly_wage of Attishoo
because they have the same rating and we know
rating determines hrly_wage.

•  Redundancy exists because of the existence
of integrity constraints (e.g., FD: R→ W).

4

What’s the problem, again

•  Update anomaly: Can we change W in just
the 1st tuple of SNLRWH?

•  Insertion anomaly: What if we want to
insert an employee and don’t know the
hourly wage for his rating?

•  Deletion anomaly: If we delete all
employees with rating 5, we lose the
information about the wage for rating 5!

5

What do we do?
•  Since constraints, in particular functional

dependencies, cause problems, we need to study
them, and understand when and how they cause
redundancy.

•  When redundancy exists, refinement is needed.
–  Main refinement technique: decomposition (replacing

ABCD with, say, AB and BCD, or ACD and ABD).
•  Decomposition should be used judiciously:

–  Is there reason to decompose a relation?
–  What problems (if any) does the decomposition cause?

6

Decomposition

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

=

7

Refining an ER Diagram

•  1st diagram translated:
Employee(S,N,L,D,S2)
Department(D,M,B)
–  Lots associated with

employees.

•  Suppose all employees in a
dept are assigned the same
lot: D L

•  Can fine-tune this way:
Employees(S,N,D,S2)
Department(D,M,B,L)

→

Before:

After:

Employee
ssn
name
lot

Works_In
Department
did
dname
budget

since

Employee
ssn
name

Works_In

Department
did
dname
budget
lot

since

8

Functional Dependencies (FDs)
•  A functional dependency (FD) has the form: X→Y,

where X and Y are two sets of attributes.
–  Examples: rating→hrly_wage, AB →C

•  The FD X→Y is satisfied by a relation instance r if:
–  for each pair of tuples t1 and t2 in r:

t1.X = t2.X implies t1.Y =t2.Y
–  i.e., given any two tuples in r, if the X values agree, then the Y

values must also agree. (X and Y are sets of attributes.)

•  Convention: X, Y, Z etc denote sets of attributes, and A,
B, C, etc denote attributes.

9

Functional Dependencies (FDs)
•  The FD holds over relation name R if, for every

allowable instance r of R, r satisfies the FD.
•  An FD, as an integrity constraint, is a statement

about all allowable relation instances.
–  Must be identified based on semantics of application.
–  Given some instance r1 of R, we can check if it violates

some FD f or not
–  But we cannot tell if f holds over R by looking at an

instance!
•  Cannot prove non-existence (of violation) out of ignorance

–  This is the same for all integrity constraints!

10

Example: Constraints on Entity Set
•  Consider relation obtained from Hourly_Emps:

–  Hourly_Emps (ssn, name, lot, rating, hrly_wage,
hrs_worked)

•  Notation: We will denote this relation schema by
listing the attributes: SNLRWH
–  This is really the set of attributes {S,N,L,R,W,H}.
–  Sometimes, we will refer to all attributes of a relation by

using the relation name. (e.g., Hourly_Emps for SNLRWH)
•  Some FDs on Hourly_Emps:

–  ssn is the key: S → SNLRWH
–  rating determines hrly_wage: R → W

11

One more example

A B C
1 1 2
1 1 3
2 1 3
2 1 2

How many possible
FDs totally on this
relation instance?

FDs with A as
the left side:

Satisfied by
the relation
instance?

A→A yes
A→B yes
A→C No
A→AB yes
A→AC No
A→BC No
A→ABC No

12

Violation of FD by a relation

•  The FD X→Y is NOT satisfied by a
relation instance r if:
– There exists a pair of tuples t1 and t2 in r such

that
t1.X = t2.X but t1.Y ≠ t2.Y

–  i.e., we can find two tuples in r, such that X
values agree, but Y values don’t.

13

Some other FDs

A B C
1 1 2
1 1 3
2 1 3
2 1 2

FD Satisfied by
the relation
instance?

C→B yes
C→AB No
B→C No
B→B Yes
AC →B Yes [note!]
… …

14

Relationship between FDs and Keys
•  Given R(A, B, C).

– A→ABC means that A is a key.
•  In general,

– X → R means X is a (super)key.

•  How about key constraint?
–  ssn → did

Employee
ssn
name
lot

Works_In
Department
did
dname
budget

since

15

Reasoning About FDs
•  Given some FDs, we can usually infer

additional FDs:
–  ssn→ did, did → lot implies ssn→ lot
–  A → BC implies A → B

•  An FD f is logically implied by a set of FDs
F if f holds whenever all FDs in F hold.
–  F+ = closure of F is the set of all FDs that are

implied by F.

16

Armstrong’s axioms

•  Armstrong’s axioms are sound and
complete inference rules for FDs!
– Sound: all the derived FDs (by using the

axioms) are those logically implied by the
given set

– Complete: all the logically implied (by the
given set) FDs can be derived by using the
axioms.

17

Reasoning about FDs
•  How do we get all the FDs that are logically

implied by a given set of FDs?
•  Armstrong’s Axioms (X, Y, Z are sets of

attributes):
–  Reflexivity:

•  If X ⊇ Y, then X → Y
–  Augmentation:

•  If X → Y, then XZ → YZ for any Z
–  Transitivity:

•  If X → Y and Y → Z, then X → Z

A B C
1 1 2
2 1 3
2 1 3
1 1 2

18

Example of using Armstrong’s
Axioms

•  Couple of additional rules (that follow from
AA):
–  Union: If X → Y and X → Z, then X →

YZ
–  Decomposition: If X → YZ, then X → Y and

X → Z
•  Derive the above two by using Armstrong’s

axioms!

19

Derive Union

•  Show that

 If X → Y and X → Z, then X → YZ

 X → YX (augment) // Append X on both sides of X → Y
 YX → YZ (augment) // Append Y on both sides of X → Z

 Thus, X → YZ (transitive)

20

Derive Decomposition

•  Show that

 If X → YZ, then X → Y and X → Z

 YZ → Y; YZ → Z (reflexive)
 Thus, X → Y, X → Z (transitive)

21

Another Useful Rule:
Accumulation Rule

•  If X → YZ and Z → W, then X →YZW

From Z → W, augment with YZ to get YZ → YZW
Thus, X → YZW (transitive)

22

Derivation Example

•  R = (A, B, C, G, H, I)
F = {A → B; A → C; CG → H; CG → I; B → H }

•  some members of F+ (how to derive them?)
–  A → H

By transitivity from A → B and B → H

–  AG → I
 By augmenting A → C with G, to get AG → CG, and then transitivity

with CG → I

–  CG → HI
 By augmenting CG → I to infer CG → CGI, and augmenting CG → H

to infer CGI → HI, and then transitivity (or use union rule)

23

Procedure for Computing F+

•  To compute the closure of a set of functional dependencies F:
 F + = F

repeat
 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F +

 for each pair of functional dependencies f1and f2 in F +

 if f1 and f2 can be combined using transitivity
 then add the resulting functional dependency to F +

until F + does not change any further

 NOTE: We shall see an alternative procedure for this task later

24

Example on Computing F+
•  F = {A → B, B → C, C D → E }
•  Step 1: For each f in F, apply reflexivity rule

–  We get: CD → C; CD → D
–  Add them to F:

•  F = {A → B, B → C, C D → E; CD → C; CD → D }

•  Step 2: For each f in F, apply augmentation rule
–  From A → B we get: A → AB; AB → B; AC → BC; AD
→ BD; ABC →BC; ABD → BD; ACD →BCD

–  From B → C we get: AB → AC; BC → C; BD → CD;
ABC → AC; ABD → ACD, etc etc.

•  Step 3: Apply transitivity on pairs of f’s
•  Keep repeating… You get the idea

