

CS 450

Database Programming

*Some of the slides in this lecture are created by Prof. Ian Horrocks from University of Oxford

2

SQL in Real Programs

•  We have seen only how SQL is used at the
generic query interface --- an environment
where we sit at a terminal and ask queries of
a database.

•  Reality is almost always different.
– Programs in a conventional language like C are

written to access a database by “calls” to SQL
statements.

3

Database Programming

Database

SQL

Code in
Programming
Language

Sequence of tuples

4

SQL in Application Code

•  SQL commands can be called from within a host
language (e.g., C++ or Java) program.
–  SQL statements can refer to host variables (including

special variables used to return status).
–  Must include a statement to connect to the right

database.
•  Two main integration approaches:

–  Embed SQL in the host language (embedded SQL,
SQLJ)

–  Create special API to call SQL commands (JDBC,
ODBC)

5

SQL in Application Code
(Con’t)

•  Impedance mismatch
–  SQL relations are (multi-) sets of records, with no a

priori bound on the number of records. Typically, no
such data structure in programming languages such as C/
C++.

–  SQL supports a mechanism called a cursor to handle
this.

6

Embedded SQL
•  Approach: Embed SQL in the host language.

–  A preprocessor converts/translates the SQL statements
into special API calls.

–  Then a regular compiler is used to compile the code.

7

Embedded SQL

•  Language constructs:
– Connecting to a database
!EXEC SQL CONNECT :usr_pwd;!
!// the host variable usr_pwd contains your user
name and password separated by ‘/’!

– Declaring variables
!EXEC SQL BEGIN DECLARE SECTION!

!EXEC SQL END DECLARE SECTION!
– Statements !!
!EXEC SQL Statements;!

8

Variable Declaration

•  Can use host-language variables in SQL
statements
– Must be prefixed by a colon (:)
– Must be declared between
 EXEC SQL BEGIN DECLARE SECTION!
!! ! !.!
 ! !.!
!! ! !.!
 EXEC SQL END DECLARE SECTION!

9

Variable Declaration in C

EXEC SQL BEGIN DECLARE SECTION!
char c_sname[20];!
long c_sid;!
short c_rating;!
float c_age;!
EXEC SQL END DECLARE SECTION!
!

Variables	
in	 host	
program	

Embedded SQL: “Error” Variables
Two	 special	 variables	 for	 repor0ng	 errors:	
•  SQLCODE	 	 	 (older)	

–  A	 nega0ve	 value	 to	 indicate	 a	 par0cular	 error	 condi0on	
–  The	 appropriate	 C	 type	 is	 long	

•  SQLSTATE	 	 	 (SQL-‐92	 standard)	
–  Predefined	 codes	 for	 common	 errors	
–  Appropriate	 C	 type	 is	 char[6]	 (a	 character	 string	 of	 five	
leNers	 long	 with	 a	 null	 character	 at	 the	 end	 to	 terminate	
the	 string)	

•  One	 of	 these	 two	 variables	 must	 be	 declared.	 	 We	
assume	 SQLSTATE	

11

Embedded SQL
•  All SQL statements embedded within a host

program must be clearly marked.
•  In C, SQL statements must be prefixed by EXEC

SQL:
 EXEC SQL!
!INSERT INTO Sailors ! !
VALUES(:c_sname,:c_sid,:c_rating,:c_age);!

•  Java embedding (SQLJ) uses # SQL { …. };

12

SELECT - Retrieving Single Row

 EXEC SQL SELECT S.sname, S.age !
 INTO :c_sname, :c_age!
! ! ! FROM Sailors S!
 WHERE S.sid = :c_sid;!

13

SELECT - Retrieving Multiple Rows

•  What if we want to embed the following
query?

 SELECT S.sname, S.age
 FROM Sailors
 WHERE S.rating > :c_minrating

•  Potentially, multiple rows will be retrieved
•  How do we store the set of rows?

– No equivalent data type in host languages like C

14

Cursors
•  Can declare a cursor on a relation or query statement

(which generates a relation).
•  Can open a cursor, and repeatedly fetch a tuple then

move the cursor, until all tuples have been retrieved.
–  Can use ORDER BY in queries that are accessed through a

cursor, to control the order in which tuples are returned.

•  Can also modify/delete tuple pointed to by a cursor.

15

Declaring a Cursor

•  Cursor that gets names and ages of sailors whose
ratings are greater than “minrating”, in alphabetical
order

 EXEC SQL DECLARE sinfo CURSOR FOR!
! SELECT S.sname, S.age!
! FROM Sailors S ! !

! ! WHERE S.rating > :c_minrating!
! ORDER BY S.sname!

16

Opening/Fetching a Cursor

•  To open the cursor (executed at run-time):
–  OPEN sinfo;!
–  The cursor is initially positioned just before the first

row
•  To read the current row that the cursor is pointing

to:
–  FETCH sinfo INTO :c_sname, :c_age

•  When FETCH is executed, the cursor is positioned
to point at the next row
–  Can put the FETCH statement in a loop to retrieve

multiple rows, one row at a time

17

Closing a Cursor

•  When we’re done with the cursor, we can
close it:
– CLOSE sinfo;!

•  We can re-open the cursor again. However,
the rows retrieved might be different
(depending on the value(s) of the associated
variable(s) when cursor is opened)
– Ex. If :c_minrating is now set to a different

value, then the rows retrieved will be different

18

Embedding SQL in C: An
Example

char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
 char c_sname[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTION
c_minrating = 3;
EXEC SQL DECLARE sinfo CURSOR FOR // declare cursor
 SELECT S.sname, S.age

 FROM Sailors S
 WHERE S.rating > :c_minrating
 ORDER BY S.sname;

EXEC SQL OPEN sinfo; // open cursor
do {
 EXEC SQL FETCH sinfo INTO :c_sname, :c_age;
 printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’); // end of file
EXEC SQL CLOSE sinfo; // close cursor

Update/Delete Commands

•  Modify the rating value of the row currently
pointed to by cursor sinfo

 UPDATE Sailors S
 SET S.rating = S.rating + 1
 WHERE CURRENT of sinfo;

•  Delete the row currently pointed to by cursor
sinfo

 DELETE Sailors S
 FROM CURRENT of sinfo;

20

Dynamic SQL
•  SQL query strings are not always known at compile time

–  Such application must accept commands from the user; and based
on what the user needs, generate appropriate SQL statements

–  The SQL statements are constructed on-the-fly

•  Dynamic SQL allows programs to construct and submit
SQL queries at run time.

•  Example of the use of dynamic SQL from within a C
program.

21

Dynamic SQL - Example

 char c_sqlstring[] = {“DELETE FROM Sailor WHERE rating > 5”};  

EXEC SQL PREPARE readytogo FROM :c_sqlstring;  
EXEC SQL EXECUTE readytogo"

Instruct	 SQL	 system	 to	
execute	 the	 query	

Inform	 SQL	 system	 to	
take	 the	 string	 as	 query	 	

SQLJ
•  SQLJ: embedded SQL in Java

–  #sql iterator deptInfoIter (String dept name, int avgSal);
 deptInfoIter iter = null;
 #sql iter = { select dept_name, avg(salary) from instructor
 group by dept name };
 while (iter.next()) {
 String deptName = iter.dept_name();
 int avgSal = iter.avgSal();
 System.out.println(deptName + " " + avgSal);
 }
 iter.close();

Limitation of Embedded SQL
•  DBMS-specific preprocessor transform the Embedded SQL

statements into function calls in the host language

•  This translation varies across DBMSs (API calls vary among
different DBMSs)

•  Even if the source code can be compiled to work with different
DBMS’s, the final executable works only with one specific
DBMS.
 → DBMS-independent only at the source code level

EXEC	 	 SQL	 	 …	
	 	 	 	 	 SELECT	 …	
	 	 	 	 	 FROM	 …	
	 	 	 	 	 WHERE	 …	

Preprocessor	
API	 CALL	 …	 NaJve	 API	 	

DBMS	
Database	
specific	

Slide from Kien Hua from University of Central Florida

Database API: Alternative to Embedding

•  Both are API (application-program
interface) for a program to interact with a
database server

•  Application makes calls to
–  Connect with the database server
–  Send SQL commands to the database server
–  Fetch tuples of result one-by-one into

program variables
•  ODBC (Open Database Connectivity)

works with C, C++, C#, and Visual Basic
•  JDBC (Java Database Connectivity)

works with Java

ODBC = Open DataBase Connectivity
JDBC = Java DataBase Connectivity

Java	
ApplicaJon	
JDBC	 API	

JDBC	
Driver	 	

DBMS	

java.sql	

25

JDBC
•  JDBC is a collection of Java classes and interface that

enables database access

•  JDBC contains methods for
–  connecting to a remote data source,
–  executing SQL statements,
–  receiving SQL results
–  transaction management, and
–  exception handling

•  The classes and interfaces are part of the java.sql package

JDBC: Architecture
Four architectural components:

–  Application (initiates and
terminates connections, submits
SQL statements)

–  Driver manager (loads JDBC driver
and passes function calls)

–  Driver (connects to data source,
transmits requests and returns/
translates results and error codes)

–  Data source (processes SQL
statements)

Java	
ApplicaJon	
JDBC	 API	

JDBC	 Driver	
Manager	

JDBC	
Driver	 2	 	

JDBC	
Driver	 1	

SQL	
Server	

Oracle	

Slide from Kien Hua from University of Central Florida

Steps to Submit a Database Query

1.  Load the JDBC driver
2.  Connect to the data source
3.  Execute SQL statements

JDBC Driver Management

•  Two ways of loading a JDBC driver:

1.  In the Java code:
 Class.forName(<driver name>)

 e.g., Class.forName(“oracle.jdbc.driver.OracleDriver”);
 // This method loads an instance of the driver class

 Or DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
2.  Enter at command line when starting the Java application:

 -Djdbc.drivers=oracle/jdbc.driver

•  DriverManager class:
§  Maintains a list of currently loaded drivers
§  The driver we need depends on which

DBMS is available to us

Java	
ApplicaJon	
JDBC	 API	

JDBC	 Driver	
Manager	

	 JDBC	
Driver	 2	

JDBC	
Driver	 1	

DBMS1	 DBMS2	

29

Detailed JDBC Steps

1. Importing Packages
2. Registering the JDBC Drivers
3. Opening a Connection to a Database
4. Creating a Statement Object
5. Executing a Query and Returning a Result Set

Object
6. Processing the Result Set
7. Closing the Result Set and Statement Objects
8. Closing the Connection

30

1: Importing Packages

//Import packages
import java.sql.*; //JDBC packages
import java.math.*;
import java.io.*;
import oracle.jdbc.driver.*;

31

2. Registering JDBC Drivers
public static void JDBCexample(String userid, String passwd)
{
 try {

 // Load Oracle driver
 Class.forName("oracle.jdbc.driver.OracleDriver")

Alternative way to load the driver:

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

The driver is available in a .jar file at the vendor website: http://www.oracle.com/
technetwork/database/features/jdbc/index-091264.html

Put the file within the classpath so that the Java compiler can access it.

32

3. Opening Connection to a Database

// Connect to the database
Connection conn = DriverManager.getConnection

(“jdbc:oracle:thin:@apollo.vse.gmu.edu:1521:ite10g”,
userid, passwd);

format: Connection connection = DriverManager.getConnection("jdbc:oracle:thin:
@<hostname>:<port>:<sid>","<username>","<password>");

See Oracle JDBC FAQs:
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html

33

4. Creating a Statement Object

// Suppose Instructor has attributes ID, name,
// dept_name, and salary. ‘?’s are placeholders
String sql = “INSERT INTO Instructor VALUES(?,?,?,?)”;
PreparedStatement pStmt = conn.prepareStatement(sql);

// now instantiate the parameters with values.
pStmt.clearParameters();
pStmt.setString(1, “88877”);
pStmt.setString(2, “Perry”);
pStmt.setString(3, “Finance”);
pStmt.setInt(4, 125000);

Prepared Statement

•  Always use prepared statements when taking an input from the
user and adding it to a query
–  NEVER create a query by concatenating strings which you get as

inputs
–  query = “insert into instructor values(‘ ” + ID + “ ’, ‘ ” + name + “ ’, ‘ ” +

 dept name + “ ’, ” + salary + “)”
–  What if name is “D’Souza”?
–  Vulnerable for SQL Injection – a technique used by hackers to steal data

or damage the database.

SQL Injection
•  Suppose query is constructed using

–  "select * from instructor where name = ’" + name + "’"
•  Suppose the user, instead of entering a name, enters:

–  X’ or ’Y’ = ’Y
•  then the resulting statement becomes:

–  "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" +
"’"

–  which is:
•  select * from instructor where name = ’X’ or ’Y’ = ’Y’

–  User could have even used
•  X’; update instructor set salary = salary + 10000; --

•  Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ =
\’Y’
–  Always use prepared statements, with user inputs as parameters

36

5. Executing a Query, Returning
Result Set &

6. Processing the Result Set

// The executeUpdate command is used if the SQL

// stmt does not return any records (e.g. UPDATE,
// INSERT, ALTER, and DELETE stmts).

// Returns an integer indicating the number of rows

// the SQL stmt modified.

try {

 int numRows = pStmt.executeUpdate();
} catch(SQLException sqle)

37

Step 5/6, Con’t
// If the SQL statement returns data, such as in
// a SELECT query, we use executeQuery method
String sqlQuery = “SELECT name, salary FROM

Instructor WHERE ID=?”;
PreparedStatement pStmt2 =

conn.prepareStatement(sqlQuery);
pStmt2.setString(1, ID);

ResultSet rset = pStmt2.executeQuery ();

// Print query results
// the (1) in getString refers to the name value,
// and the (2) refers to the salary value
while (rset.next ())

 System.out.println (rset.getString (1)+ " ” +
 rset.getInt(2));

38

7. Closing the Result Set and
Statement Objects

8. Closing the Connection
 // close the result set, statement,
 // and the connection
 rset.close();
 pStmt.close();
 pStmt2.close();
 conn.close();
 }
 catch(SQLException sqle)
 {
 System.out.println(“SQLException:”+sqle);
 }

}

ResultSet Example
•  PreparedStatement.executeUpdate() only returns the

number of affected records

•  PreparedStatement.executeQuery() returns data,
encapsulated in a ResultSet object
–  ResultSet is similar to a cursor
–  Allows us to read one row at a time
–  Intially, the ResultSet is positioned before the first row
–  Use next() to read the next row
–  next() returns false if there are no more rows

Common ResultSet Methods (1)

POSITIONING	 THE	 CURSOR	
next()	 Move	 to	 next	 row	
previous()	 Moves	 back	 one	 row	

absolute(int	 num)	 	
Moves	 to	 the	 row	 with	 the	
specified	 number	

rela0ve(int	 num)	 	
Moves	 forward	 or	 backward	 (if	
nega0ve)	

first()	 	 Moves	 to	 the	 first	 row	
last()	 Moves	 to	 the	 last	 row	

Common ResultSet Methods (2)

RETRIEVE	 VALUES	 FROM	 COLUMNS	

getString(string	
columnName):	 	

Retrieves	 the	 value	 of	 designated	
column	 in	 current	 row	

getString(int	
columnIndex)	 	

Retrieves	 the	 value	 of	 designated	
column	 in	 current	 row	

getFloat	 (string	
columnName)	 	

Retrieves	 the	 value	 of	 designated	
column	 in	 current	 row	

JDBC Code – Putting it Together
public static void JDBCexample(String userid, String passwd)

 {
 try {

 Class.forName ("oracle.jdbc.driver.OracleDriver");
 Connection conn = DriverManager.getConnection(
 "jdbc:oracle:thin:@apollo.vse.gmu.edu:1521:ite10g”,
userid, passwd);

 … Do Actual Work …

 rset.close();
 pStmt.close();

 conn.close();
 }

 catch (SQLException sqle) {
 System.out.println("SQLException : " + sqle);
 }

 }

43

Mapping Data Types
•  There are data types specified to SQL that need to be

mapped to Java data types if the user expects Java to be
able to handle them.

•  Conversion falls into three categories:
–  SQL type to Java direct equivalents
 SQL INTEGER direct equivalent of Java int data type.
–  SQL type can be converted to a Java equivalent.
 SQL CHAR, VARCHAR, and LONGVARCHAR can all be

converted to the Java String data type.
–  SQL data type is unique and requires a special Java data class

object to be created specifically for their SQL equivalent.
 SQL DATE converted to the Java Date object that is defined in

java.Date especially for this purpose.

44

Use SQLJ to write your program when…
•  you want to be able to check your program for

errors at translation-time rather than at run-time.
–  JDBC is overly dynamic, errors cannot be caught by

compiler
•  you want to write an application that you can

deploy to another database. Using SQLJ, you can
customize the static SQL for that database at
deployment-time.

•  you are working with a database that contains
compiled SQL. You will want to use SQLJ
because you cannot compile SQL statements in a
JDBC program.

45

Use JDBC to write your program when…

•  your program uses dynamic SQL. For example,
you have a program that builds queries on-the-fly
or has an interactive component.

•  you do not want to have a SQLJ layer during
deployment or development.

Useful JDBC Tutorial

•  http://java.sun.com/docs/books/tutorial/
jdbc/basics/

46

