
Real-Time Fog using Post-processing in OpenGL

Anonymous∗

A Research

ABSTRACT

Fog is often used to add realism to a computer generated scene, but
support for fog in current graphics APIs such as OpenGL is limited.
The standard fog models are very simplistic, allowing for a uniform
density fog with slight variations in attenuation functions. While re-
cent extensions to the OpenGL standard provide height dependent,
or layered fog, it does not correctly account for line-of-sight effects
as the viewpoint moves through the fog.

In this paper, we present a new, fast but simple method for gen-
erating heterogeneous fog as a post processing step. Using stan-
dard OpenGL Shading Language features, it requires only the depth
buffer from the normal rendering process as input, evaluating fog
integrals along line-of-sight to produce realistic heterogeneous fog
effects in real-time.
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Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.1 [Computer Graphics]:
Hardware Architecture—Graphics Processors

1 INTRODUCTION

As far back as version 1.1, OpenGL has provided support for fog.
However, fog has always been implemented as a relatively cheap,
and simplistic, depth based effect. The basic idea behind fog is that
the distance between the viewpoint and a fragment is computed.
This distance is then used to blend the fragment color with a fog
color. While this produces reasonable results, there are a few prob-
lems. The OpenGL specification permits implementations to ap-
proximate the fragment distance using only the fragment depth, or
Z value. Most API implementations use this approximation, which
leads to some undesirable effects as shown in Figure 1, where more
trees are visible along the horizon in the right image. Both images
are generated from the same camera location. However, in the right
image, the camera has been tilted downwards. While the camera-
object distance has not changed for these trees, the rotation of the
camera has resulted in reduced Z values. This causes a reduction
in the computed fog density, allowing trees that were previously
invisible, to become visible.

Figure 2 shows how this artifact can occur using OpenGL fog
model. The grey band shows the visible region from no fog to com-
plete fog. In the left diagram, Tree 1 is in the fully fogged region.
With the camera rotated in the right diagram, Tree 1 falls into the
partially fogged region, and thus become visible.

Recent additions to the OpenGL standard include the ability to
specify the effective ′Z′ value, or depth of a vertex for the purposes
of fog computations. Often referred to as the fog extension, this
permits significantly more control over the fog generation and al-
lows effects such as height dependent fog, but at the expense of
providing more per-vertex data - already a potential bottleneck, and
more CPU cycles.
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Figure 1: Problems with standard fog. The right image shows more
trees on the hillside when the camera is tilted downwards.

Figure 2: Fog artifacts

Another problem with the fog model in OpenGL is that only
rendered objects are fogged, leaving the background unaffected, as
shown by Figure 3.

The obvious solution to this problem is to set the background
color to the fog color, but this only works for homogeneous fog,
not the fog extension, which usually requires a graded background.
Thus, the standard fog model employed by OpenGL is somewhat
limited in its application.

Considerable work has been done to improve the situation using
either physically-based or appearance-based approaches [1] [2] [4]
[5] [6] [8] [9] [10] [11] [12] [16] [18] [19] [21] [22] [23] [25], with
the ultimate goal of simulating fully heterogeneous fog in three di-
mensions. However, most approaches either cannot achieve the per-
formance characteristics required for real time applications, or re-
quire sophisticated algorithms that must be integrated into the main
rendering pipeline.

In this paper we present a new method of generating real-time
heterogeneous fog using post-processing technique. Our algorithm
uses analytical functions to evaluate the fog integral along the line
of sight, accurately computing the fog density on a per-pixel basis to
produce heterogeneous fog effects. It requires only the depth buffer
generated during the normal rendering process, making it very easy
to integrate into existing rendering applications. Additionally, it is
also extremely fast, being implemented entirely on the GPU.

In the next section, we review the existing approaches for real
time fog rendering. Section 3 describes the technical details in-
cluding fog approximation in appearance based fog simulation and
our new algorithm with hardware acceleration technique. Section
4 presents the implementation as well as the integration of our al-



Figure 3: Background is not fogged

gorithm to the OpenGL rendering pipeline. Section 5 shows the
results, section 6 compares our method with others and section 7
discusses our conclusions and ideas for future work.

2 PREVIOUS WORK

Existing work for realistic fog rendering can be broadly categorized
as physically-based and appearance-based.

In the physically-based approach, fog is considered as a stan-
dard participating medium, and is generated through global illumi-
nation algorithms. To reduce expensive computational cost, simpli-
fications are made through single scattering and multiple scattering
models. In single scattering, the participating medium is assumed to
be optically thin, allowing the source radiance simplification to ig-
nore multiple scattering within the medium. Analytic method [23]
has been used to solve the integral problem presented in the partic-
ipating medium with significant simplification. The deterministic
method [11] [16] aims at numerical solutions of the same problem,
for example, Zhu et al [25] applies ’depth peeling’[7] technique to
calculate volumetric lighting, while the stochastic method [22] is
found to be used in clouds instead of fog by applying random sam-
pling to solve the equation for the radiance reaching the eye for
the single scattering. In multiple scattering, both deterministic and
stochastic methods used here contain two stages: an illumination
pass for computing the source radiance, and a visualization pass for
the final image. Some of the deterministic methods [21] extend the
classical radiosity method that accounts for isotropic emitting and
scattering medium (zonal method), other improvements can deal
with anisotropy using spherical harmonics [2] [10], discrete ordi-
nates, or implicit representation. Stochastic methods [6] [9] [12]
[18] solve the transport equation by means of random sampling, us-
ing random paths along iteration points. In summary, while these
methods can produce realistic scenes, they come with a high com-
putational cost, even when hardware acceleration is implemented,
they are not real-time. Cerezo et al [5] provides a comprehensive
review of the participating medium rendering techniques.

In appearance based approaches, the idea is to produce visually
pleasant results without expensive global illumination determina-
tion. Perlin [19] documented snapshots of thoughts such as using
Gabor functions for simulating atmospheric effects. Biri et al [3]
[13] suggested modeling of complex fog through a set of func-
tions allowing analytical integration. Zdrojewska [26] introduced
randomness in attenuation through perlin noise and produces het-
erogeneous looking fog without line of sight integral. Height de-
pendent, or layered fog, varies the fog density based on the height
[8] [14]([19] dose not contain implementation details). Mech [15]
proposed to represent the gas boundary by a polygonal surface, us-
ing graphics hardware to determine the attenuation factor for each

pixel inside or behind the gas. Nvidia developers[17] adopted sim-
ilar idea proposed in [15], developed a RGB-encoding technique
combining with ’depth peeling’[7] to render fog polygon objects
as thick volumes on GPU. The advantage of these approaches is
that they allow simple but fast rendering of fog. However, Biri’s
method is not yet fast enough on current hardware, and Zdrojew-
ska’s method does not take fog volume into account, causing in-
correct results when considering motion parallax, making it more
suited to simulate low cloud in natural environments without trav-
eling through the fog (i.e. as opposed to man-made environments).
Although Biri’s algorithm used analytical functions to approximate
the extinction coefficient, the performance of the implementation
was constrained by the way in which the depth information was
used for integration, and the pixel texture technique used in [8]
did not produce real-time results. Fog polygon volume based ap-
proach [15] [17] suite more for small volumes such as light shaft,
smoke, etc. An additional constraint imposed by many of these
techniques is that the production of the fog effect must be integrated
into the main rendering pipeline - something that is not practical for
many existing rendering applications. Our new appearance-based
approach avoids this constraint by using the depth buffer to recon-
struct scene depth information, while performing line-of-sight inte-
gration on the GPU using analytical functions and true Euclidean
distance.

3 TECHNICAL DETAILS

To compute fog color, we need to integrate along the ray between
the camera position and the fragment position given the fog density
function. There are two main aspects to generating fog using a post
processing approach. The first is to reconstruct the 3D position of
each fragment in the frame buffer, while the second is to compute
the fog based on the fragment and eye positions.

3.1 3D Fragment Position Reconstruction

In order to evaluate the fog integral along line of sight accurately,
the 3D position of each fragment in world coordinate needs to be
reconstructed. The depth buffer stores transformed depth value for
each fragment and can be used to reconstruct 3D fragment position.
Generally, most post processing applications that need depth infor-
mation use specialized shaders and alternate render targets to ’lay
down’ depth information in a form which can readily be used in the
post processing stages. The disadvantage to this approach is that it
requires significantly more integration into the rendering applica-
tion. It can also impact performance (requiring an extra scene ren-
dering pass) and bandwidth (requiring an extra render target). For
our new approach, we use a standard post-processing technique of
drawing a screen aligned polygon with customized vertex/fragment
shaders, but use the regular depth buffer generated as part of the nor-
mal rendering process as an input texture instead. The problem with
the depth buffer is that the depth information is non-linear, having
been transformed by the modelview and projection matrices. The
first step is to reconstruct scene depth. A naive approach to this is
to use an inverted modelview/projection matrix, along with normal-
ized x and y values, to compute the full 3D fragment position rela-
tive to the camera. Once this is known, along with the position and
orientation of the camera, the real world position of the fragment
can be obtained. However, this turns out to be quite expensive, so
we use an alternative, faster approach. The first step is to compute
the depth value z. From an examination of the projection matrix,
we can deduce that

z =
−P34

z′

w′ +P33

(1)

where

P33 =
f +n

n− f
(2)



Figure 4: Reconstruct 3D fragment position, relative to the camera.

and

P34 =
−2 f ×n

f −n
(3)

where n is the distance to the near clipping plane, and f is the dis-
tance to the far clipping plane.

Given that we can obtain z′

w′ from the depth buffer, and both P33

and P34 can either be computed based on knowledge of the camera
properties, or obtained directly from the projection matrix, we can
easily convert a value from the depth buffer to an actual depth value.
This also has the result of reducing it to a scalar operation, requiring
one addition and one division per pixel.

The second step is to compute the real world position of the frag-
ment based on this depth value, relative to the camera. To do this,
we take advantage of the graphics hardware by setting up a unit
vector in the direction of the fragment, using a vertex shader in the
post processing. The hardware automatically interpolates this for us
to use in the fragment shader, where it is used to generate the rela-
tive location of the fragment by computing the fragment Euclidean

distance |~U |.

|~U | =
z

û · v̂
(4)

where û is the unit vector in the direction of the camera to the frag-
ment, v̂ is the unit vector in the direction of the camera, and z is
defined in (1). Figure 4 shows 3D fragment position reconstruc-
tion. The 3D position of the fragment relative to the camera is then
obtained by

~U = |~U | · û

The final step is to add the position of the camera to ~U , pro-

ducing the real world 3D position of the fragment ~P, where ~P =
(x f ragment ,y f ragment ,z f ragment).

3.2 Fog Computation

3.2.1 Homogeneous Fog

Appearance-based fog generally assumes the scattering of a
constant ambient illumination in a homogeneous non-emitting
medium. It simplifies the transport equation in participating
medium model as follows:

L(x) = eκa|x0−x|L(x0)+(1− eκa|x0−x|)Le (5)

where Le represents the constant amount of light, L(x0) is the ra-
diance of light at space point x0, and κa being a constant as the
absorption coefficient to represent homogeneous medium.

The first term characterizes the loss of light of the object surface
due to the absorption of the medium. The second term describes the
contribution of the scattering within the medium. The OpenGL fog

model uses this approximation to integrate a uniform attenuation
due to medium absorption between the object and the viewer.

C = f ·Cin +(1− f ) ·C f og

where f = e−(density·z), z is the eye-coordinate distance between the
viewpoint and the fragment, Cin is the fragment color, C f og is the
fog color. Cin maps to L(x0), C f og maps to Le.

3.2.2 Layered Fog

Layered fog extends equation (5) to non-uniform attenuation of the
medium - f (u), based on height variation.

L(x) = e−
∫ f ragment

camera f (u)duL(x0)+(1− e−
∫ f ragment

camera f (u)du)Le

Once we have the fragment position in real world coordinates, we
can compute the expected blending of the fragment color with the
fog color, based on the amount of fog between the camera and the
fragment. To do this, we need to evaluate the fog density integral
along the camera-to-fragment vector. In the case of a homogeneous
fog, this computation is trivial, while in the case of fully heteroge-
neous fog, it can be computationally very expensive. Layered fog,
where the fog density f , is dependent only on the height y, is a spe-
cial case of heterogeneous fog. Suppose the total fog between the
camera, and the fragment position, is given by the integral F along
the camera-fragment vector.

F =
∫ f ragment

camera
f (u)du

where f (u) is the fog density at a 3d space position. Since the fog
density is only dependent upon y, this can be simplified:

F =
1

sin(θ f ragment)

∫ y f ragment

ycamera

f (y)dy (6)

where θ f ragment is the angle of inclination of the camera to frag-
ment vector, calculated on per pixel basis, ycamera is the y coor-
dinate of the eye point in world space, and y f ragment is the frag-
ment y position in world coordinate. Figure 5 shows the geomet-

ric relationships among Euclidean distance |~U |, θ and the height

|y f ragment − ycamera|. We can easily apply |~U | to express equation
(6) as follows:

F =
|~U |

|y f ragment − ycamera|

∫ y f ragment

ycamera

f (y)dy (7)

Obviously, equation (7) coverts absorption of a ray along line of

Figure 5: Height Dependent Fog Computation Per Fragment

sight to its vertical component by a scaling factor. Combining
equation(4), we define layered fog as below:

F =
z

û · v̂
·

1

|y f ragment − ycamera|

∫ y f ragment

ycamera

f (y)dy (8)



The method of evaluating this integral depends on the fog func-
tion. Functions that can be integrated analytically are generally triv-
ial to compute in a fragment shader, but it can be difficult to achieve
realistic looking since most analytical functions produce periodic
patterns unless a large number of terms are used, and this can be
slow to evaluate. Hard coded functions can be used to produce cus-
tomized fog patterns, well suited to layered fog. Non-analytical
functions present the biggest problem, since approximation meth-
ods require looping that seriously degrades performance. Our solu-
tion to this was to pre-compute the fog integral across its expected
range, storing the result in a texture that could be used as a lookup
table in the fragment shader.

3.2.3 Heterogeneous Fog

By using a fog density function that is independent in each dimen-
sion, we can easily extend our method to produce 3 dimensional
heterogeneous fog effects. In this case, the fog integral F can be
modeled as follows:

F(x,y,z) = F(x)F(y)F(z)

As with layered fog, functions that can be integrated analytically
can be evaluated directly in the fragment shader, or the integrals
can be pre-computed and stored in textures.

3.2.4 Putting it Together

Once the fog integral has been evaluated, the fragment can be
blended with the fog color. We choose an exponential blending
function

f = e−F

although any suitable function can be used.

3.2.5 Color Gradient Fog

We can extend this algorithm to evaluate fog integrals on individual
color components using different fog density functions. This can
be used to produce color variations in fog, for example, simulat-
ing smog when certain colors are scattered or absorbed more than
others. Using layered fog as an example, the fog computation is
modeled by the following:

Fr||g||b =
z

û · v̂
·

1

|y f ragment − ycamera|

∫ y f ragment

ycamera

fr||g||b(y)dy (9)

where fr||g||b(y) is fog density function for r, g or b color compo-
nent. The fragment is then blended using the individually computed
component values as follows;

(Sr +1−Dr,Sg +1−Dg,Sb +1−Db)

where (Sr,Sg,Sb,Sa) and (Dr,Dg,Db,Da) are the source and desti-
nation blending factors respectively.

4 IMPLEMENTATION

Our implementation is based upon a custom hierarchical scene
management and OpenGL based rendering engine developed by the
authors, although any OpenGL based rendering engine should be
suitable. Written in C++, our application provides ’hooks’ into var-
ious parts of the rendering pipeline, allowing us to easily insert our
post processing algorithm.

The first step is to render the scene into the frame buffer, which
is done by the application as before. Once the scene rendering is
complete, the scene post processing is triggered just prior to the
frame buffer swap. At this point, the depth buffer is captured us-
ing the OpenGL copy-to-texture functionality. Next, the depth con-
version parameters P33(equation(2)) and P34(equation(3)) are com-
puted based on the camera properties. The post processing is then

initiated by drawing a screen-aligned polygon, textured with the
depth texture, and using custom vertex and fragment shaders writ-
ten in the OpenGL Shading Language. The vertex shader is used to
set up the eye-to-fragment unit vector, defined in real world coordi-
nates. This is interpolated by the hardware pipeline, and delivered
to the fragment shader for use in computing the fragment position.
The depth conversion parameters needed for converting the depth
buffer values are passed to the fragment shader as uniform vari-
ables. Figure 6 shows the steps in our post processing implementa-
tion, and how it integrates into the rendering application.

Figure 6: Integration of Post-processing

To blend the fog color with the fragment color, we take advan-
tage of the standard OpenGL blending functionality and simply
compute an alpha value in the fragment shader. The output from
the fragment shader is a fragment color consisting of the RGB fog
color, and the computed alpha (fog) value. The rendering pipeline
takes care of the rest of the work by blending the fog color with the
existing fragment in the frame-buffer.

The fragment shader itself is relatively simple. Pseudo code for
generating layered fog is given for it below.

read fragment depth from depth texture

perform scene depth reconstruction

compute eye-to-fragment vector

compute fragment position in real world

compute Euclidean distance between the

camera and the fragment

evaluate fog integral

compute alpha value

5 RESULTS

The algorithms in this paper were implemented on a 2.8GHz Pen-
tium IV platform, with 1GB RAM and an nVIDIA 6800 graphics
card, running Linux.

A number of test scenes were chosen using a variety of resolu-
tions and fog functions.

The first test scene Figure 7, uses a simple four point ramp func-
tion to produce a simple height dependent (layered) fog. The idea
behind this fog function was to produce a thin layer of fog, just
above the ground.

Figure 8 is an underwater scene that demonstrates another use of
fog. This scene uses a fog density that increases linearly with depth
to simulate the increasing attenuation of light in water.

Figure 9, the cave scene, uses a two point fog function, with a
uniform density up to a height y1, then falling linearly to zero at a
point y2.



Figure 7: Serene Street - A low level ground fog using a simple height
based function

Figure 10, another cave scene, with heterogeneous fog based on
Perlin noise functions (pre-integrated) for X and Z, and an expo-
nential function for the height.

Figure 11, the Village scene, uses heterogeneous fog based on 3
Perlin noise functions.

Figure 12 shows a selection of scenes that use a simple fog den-
sity function that increases linearly with decreasing height. The
heterogeneous appearance is a result of depressions in the terrain,
and significantly improves the perception of depth.

Tests indicated that the cost of generating layered fog effect
ranges between 0.39 to 3.08 milliseconds for the above scenes, de-
pending on the screen resolution and complexity of the fog func-
tion. The maximum screen resolution was 1024×1024.

6 DISCUSSION

Since our technique is post-processing, and evaluates the fog in-
tegral along the line of sight on per pixel basis, it does not suffer
from the popping effect discussed in figure 2, nor the background
problem shown in figure 3. It eliminates limitations in methods
such as Biri’s [3], which produces noticeable artifacts for fog ren-
dering when the texture size is small compared to the image size, or
compromised performance if a larger texture is used. To enhance
the heterogeneous appearance of the fog rendering, we apply Per-
lin noise functions instead of equipotential functions used for local
refinement by Biri et al. Our method can also easily simulate the
effects of wind to animate the fog by providing time dependent off-
sets when evaluating the fog integrals.

7 CONCLUSION AND FUTURE WORK

In this paper we demonstrate a new, flexible and efficient method
of generating advanced fog effects in real time. We apply post-
processing techniques in the GPU to produce natural looking het-
erogeneous fog using Euclidean fragment distance reconstructed
from the depth buffer. Since the implementation requires only the
normal depth buffer as input, we avoid the need for customized
shaders in the standard rendering pipeline, making it very easy to
integrate into existing rendering applications. In summary, our con-
tribution includes the following attributes:

• Accurate scene depth reconstruction from the depth buffer.

Figure 8: Underwater Adventure

• Accurate 3D fragment position reconstruction in world space
from scene depth.

• An easily integrated GPU based post-processing technique for
real time frame rates.

• Realistic Heterogeneous fog and extension of color gradient
fog.

Our method makes the assumption of independent fog density on
three dimensions. In future work, we need to solve arbitrary fog
density integral problem including correlations across dimensions,
and extend this technique into a global illumination model.
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