
Introduction to Walsh Analysis
Alternative Views of the Genetic Algorithm

R. Paul Wiegand
paul@tesseract.org

ECLab
George Mason University

EClab - Summer Lecture Series – p.1/39

Outline of Discussion

Part I: Overview of the Walsh Transform ←
Part II: Walsh Analysis of Fitness

Part III: Walsh Analysis of Mixing Matrices

Part IV: Conclusions

EClab - Summer Lecture Series – p.2/39

Overview of the Walsh Transform

What is Walsh Analysis?

Analysis (of a GA) using Walsh Transform
Historically mainly for landscape analysis

Way of “measuring where the energy/information
content in a landscape is”
Helps define notions such as “building block” and
“deception” more formally

Recently applied to analysis of variation
Used in Vose dynamical systems model of SGA
Exposes properties of the mixing matrix in the SGA
model

EClab - Summer Lecture Series – p.3/39

Overview of the Walsh Transform

What is a Basis?

A set of linearly independent vectors in a vector space such
that each vector in the space is a linear combination of
vectors from the set.

For Example:

Suppose U is the unit basis for <2

U1 = < 1 0 >

U2 = < 0 1 >

~y ∈ <2

~y = 2.0U1 − 3.1U2

A basis can be seen as a type of viewpoint or perspective

EClab - Summer Lecture Series – p.4/39

Overview of the Walsh Transform

What is a Basis?

A set of linearly independent vectors in a vector space such
that each vector in the space is a linear combination of
vectors from the set.

For Example:
Suppose U is the unit basis for <2

U1 = < 1 0 >

U2 = < 0 1 >

~y ∈ <2

~y = 2.0U1 − 3.1U2

A basis can be seen as a type of viewpoint or perspective

EClab - Summer Lecture Series – p.4/39

Overview of the Walsh Transform

What is a Basis?

A set of linearly independent vectors in a vector space such
that each vector in the space is a linear combination of
vectors from the set.

For Example:
Suppose U is the unit basis for <2

U1 = < 1 0 >

U2 = < 0 1 >

~y ∈ <2

~y = 2.0U1 − 3.1U2

A basis can be seen as a type of viewpoint or perspective

EClab - Summer Lecture Series – p.4/39

Overview of the Walsh Transform

Basis Transformations

Takes a space and expresses it under a
new/different basis
~x 7→ W~x (assuming all objects are real)
Change in viewpoint or perspective

EClab - Summer Lecture Series – p.5/39

Overview of the Walsh Transform

What is the Walsh Transform?

Discrete analog of the Fourier transform
Transformation into the Walsh basis
Change in viewpoint:

For landscape analysis: to help see schema more
clearly
For variation analysis: to help expose certain
mathematical properties of the mixing matrix

EClab - Summer Lecture Series – p.6/39

Overview of the Walsh Transform

What is the Walsh Transform?

Discrete analog of the Fourier transform
Transformation into the Walsh basis
Change in viewpoint:

For landscape analysis: to help see schema more
clearly
For variation analysis: to help expose certain
mathematical properties of the mixing matrix

For example:
Before: see points in landscape residing in

implied partitions

Now: see schemata in landscape explicitly
and points are implied by construction.

EClab - Summer Lecture Series – p.6/39

Outline of Discussion

Part I: Overview of the Walsh Transform
√

Part II: Walsh Analysis of Fitness ←
Part III: Walsh Analysis of Mixing Matrices

Part IV: Conclusions

EClab - Summer Lecture Series – p.7/39

Walsh Analysis of Fitness

Fitness & the Standard Basis

(Assuming binary representation)

Indiv. are fixed-length bin. str.
x ∈ {0, 1}`

We can enumerate points and
associated fitness values
There is an implied basis:

f(j) =
11...1∑

i=00...0

fiδij

Where δij = 1 when i = j and 0

otherwise

Example:
3-bit landscape

Point Fitness

000 f000

001 f001

...
...

111 f111

EClab - Summer Lecture Series – p.8/39

Walsh Analysis of Fitness

Overview of Schema

Schemata are sets of search points sharing
some “syntactic feature”

s ∈ {0, 1, ∗}`
x ∈ s, iff ∀i (xi = si) ∨ (si = ∗)

For example:

“*”⇔ “Don’t care”

Schema Members
1000

1**0 1010
1100
1110

EClab - Summer Lecture Series – p.9/39

Walsh Analysis of Fitness

Walsh Functions (1)

Let’s define some functions for convenience...

α(si) =

{
0, if si = ∗
1, if si = 0, 1

A “0” indicates an undefined po-
sition, while a “1” indicates one
that is defined.

jp(s) =
∑̀

i=1

α(si)2
i−1

Defines the partition number of a
schema. E.g., jp(∗ ∗ ∗) = 0,
jp(∗ ∗ f) = 1, . . ., jp(fff) = 7.

yi = (−1)xi

Define auxiliary string, where
1 7→ −1 and 0 7→ 1. Multiplication
can now act as XOR.

EClab - Summer Lecture Series – p.10/39

Walsh Analysis of Fitness

Walsh Functions (1)

Let’s define some functions for convenience...

α(si) =

{
0, if si = ∗
1, if si = 0, 1

A “0” indicates an undefined po-
sition, while a “1” indicates one
that is defined.

jp(s) =
∑̀

i=1

α(si)2
i−1

Defines the partition number of a
schema. E.g., jp(∗ ∗ ∗) = 0,
jp(∗ ∗ f) = 1, . . ., jp(fff) = 7.

yi = (−1)xi

Define auxiliary string, where
1 7→ −1 and 0 7→ 1. Multiplication
can now act as XOR.

EClab - Summer Lecture Series – p.10/39

Walsh Analysis of Fitness

Walsh Functions (1)

Let’s define some functions for convenience...

α(si) =

{
0, if si = ∗
1, if si = 0, 1

A “0” indicates an undefined po-
sition, while a “1” indicates one
that is defined.

jp(s) =
∑̀

i=1

α(si)2
i−1

Defines the partition number of a
schema. E.g., jp(∗ ∗ ∗) = 0,
jp(∗ ∗ f) = 1, . . ., jp(fff) = 7.

yi = (−1)xi

Define auxiliary string, where
1 7→ −1 and 0 7→ 1. Multiplication
can now act as XOR.

EClab - Summer Lecture Series – p.10/39

Walsh Analysis of Fitness

Walsh Functions (2)

Define Walsh Functions, which provide the set of 2`

monomials of aux string variables:

ψj(y) =
∏̀

k=1

y
jk
k

Here j is treated like a binary
string, and is indexed by k.

For example:
Notice how j determines which

yi values are included in the

product.

Partition α(s) j(s) ψj(y)
∗ ∗ ∗ 000 0 1
∗ ∗ f 001 1 y1

∗f∗ 010 2 y2

∗ff 011 3 y1y2

f ∗ ∗ 100 4 y3

f ∗ f 101 5 y1y3

ff∗ 110 6 y2y3

fff 111 7 y1y2y3

EClab - Summer Lecture Series – p.11/39

Walsh Analysis of Fitness

Walsh Functions (2)

Define Walsh Functions, which provide the set of 2`

monomials of aux string variables:

ψj(y) =
∏̀

k=1

y
jk
k

Here j is treated like a binary
string, and is indexed by k.

For example:
Notice how j determines which

yi values are included in the

product.

Partition α(s) j(s) ψj(y)
∗ ∗ ∗ 000 0 1
∗ ∗ f 001 1 y1

∗f∗ 010 2 y2

∗ff 011 3 y1y2

f ∗ ∗ 100 4 y3

f ∗ f 101 5 y1y3

ff∗ 110 6 y2y3

fff 111 7 y1y2y3

EClab - Summer Lecture Series – p.11/39

Walsh Analysis of Fitness

Walsh Functions (3)

A brief segue (we’ll come back to this later)...

Note that we only care about values of yk which are -1
(or when xk = 1)

In fact, we only care about the number of such factors
included in the product

This number is simply the number of positions k that
both x and j contain a 1

(
xT j

)

We could re-write the Walsh Function as follows:
ψj(x) = (−1)(x

T j)

Rather than see this as a set of functions that produce
vectors, we could see it as a matrix: ψxj

EClab - Summer Lecture Series – p.12/39

Walsh Analysis of Fitness

Walsh Functions (4)

Things of note about Walsh Functions:
Since yi ∈ {−1,+1}, exponents > 1 are redundant

Number in bit-reversed order (trad. in Walsh lit.)

ψj defines a basis over some real vector (~w), just as the
delta function did earlier over ~f :

f(x) =
11...1∑

j=00...0

wj ψj (y(x))

The ψj basis is orthogonal:
11...1∑

x=00...0

ψi (y(x)) ψj (y(x)) =

{
2`, if i = j

0, if i 6= j

EClab - Summer Lecture Series – p.13/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (1)

We call wj a Walsh Coefficient
We might calculate these as follows:

wj =
1

2`

11...1∑

x=00...0

f(x) ψj (y(x))

However, there exists a Fast Walsh
Transform, similar to the Fast Fourier
Transform
Once obtained, we can use then in linear
summations to produce schema averages

EClab - Summer Lecture Series – p.14/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (2)

The relationship between the Walsh coefficients and
schema averages can be obtained as follows:

f(s) =
1

|s|
∑

x∈s
f(x)

=
1

|s|
∑

x∈s

11...1∑

j=00...0

wj ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s
ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s

∏`

i=1 (yi(xi))
ji

Non-zero terms always
have magnitude±|s|, so
we can remove 1

|s| fac-
tor.

f(s) =
j

sign(s) wj

EClab - Summer Lecture Series – p.15/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (2)

The relationship between the Walsh coefficients and
schema averages can be obtained as follows:

f(s) =
1

|s|
∑

x∈s
f(x)

=
1

|s|
∑

x∈s

11...1∑

j=00...0

wj ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s
ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s

∏`

i=1 (yi(xi))
ji

Each term must be ±1.
The sum is bounded by
±|s|.

Non-zero terms always
have magnitude±|s|, so
we can remove 1

|s| fac-
tor.

f(s) =
j

sign(s) wj

EClab - Summer Lecture Series – p.15/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (2)

The relationship between the Walsh coefficients and
schema averages can be obtained as follows:

f(s) =
1

|s|
∑

x∈s
f(x)

=
1

|s|
∑

x∈s

11...1∑

j=00...0

wj ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s
ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s

∏`

i=1 (yi(xi))
ji

Each term must be ±1.
The sum is bounded by
±|s|.

Non-zero terms always
have magnitude±|s|, so
we can remove 1

|s| fac-
tor.

f(s) =
j

sign(s) wj

EClab - Summer Lecture Series – p.15/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (2)

The relationship between the Walsh coefficients and
schema averages can be obtained as follows:

f(s) =
1

|s|
∑

x∈s
f(x)

=
1

|s|
∑

x∈s

11...1∑

j=00...0

wj ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s
ψj (y(x))

=
1

|s|

11...1∑

j=00...0

wj
∑

x∈s

∏`

i=1 (yi(xi))
ji

Each term must be ±1.
The sum is bounded by
±|s|.

Non-zero terms always
have magnitude±|s|, so
we can remove 1

|s| fac-
tor.

�

f(s) =

�

j

sign(s) wj

EClab - Summer Lecture Series – p.15/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (3)

Now we consider schema averages as the partial sum of
signed Walsh coefficients:

Partition Average Fitness
∗ ∗ ∗ w0

∗ ∗ f w0 ± w1

∗f∗ w0 ± w2

∗ff w0 ± w1 ± w2 ± w3

f ∗ ∗ w0 ± w4

f ∗ f w0 ± w1 ± w4 ± w5

ff∗ w0 ± w2 ± w4 ± w6

fff w0 ± w1 ± w2 ± w3 ± w4 ± w5 ± w6 ± w7

For example:
f(∗01) = w0−w1+w2−w3

Coefficients represent the
contributions linear &
non-linear components of
a given schema have on
fitness.

Notice: Low order schema require very few Walsh coefficients

EClab - Summer Lecture Series – p.16/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (3)

Now we consider schema averages as the partial sum of
signed Walsh coefficients:

Partition Average Fitness
∗ ∗ ∗ w0

∗ ∗ f w0 ± w1

∗f∗ w0 ± w2

∗ff w0 ± w1 ± w2 ± w3

f ∗ ∗ w0 ± w4

f ∗ f w0 ± w1 ± w4 ± w5

ff∗ w0 ± w2 ± w4 ± w6

fff w0 ± w1 ± w2 ± w3 ± w4 ± w5 ± w6 ± w7

For example:
f(∗01) = w0−w1 +w2−w3

Coefficients represent the
contributions linear &
non-linear components of
a given schema have on
fitness.

Notice: Low order schema require very few Walsh coefficients

EClab - Summer Lecture Series – p.16/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (3)

Now we consider schema averages as the partial sum of
signed Walsh coefficients:

Partition Average Fitness
∗ ∗ ∗ w0

∗ ∗ f w0 ± w1

∗f∗ w0 ± w2

∗ff w0 ± w1 ± w2 ± w3

f ∗ ∗ w0 ± w4

f ∗ f w0 ± w1 ± w4 ± w5

ff∗ w0 ± w2 ± w4 ± w6

fff w0 ± w1 ± w2 ± w3 ± w4 ± w5 ± w6 ± w7

For example:
f(∗01) = w0 −w1+w2 −w3

Coefficients represent the
contributions linear &
non-linear components of
a given schema have on
fitness.

Notice: Low order schema require very few Walsh coefficients

EClab - Summer Lecture Series – p.16/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (3)

Now we consider schema averages as the partial sum of
signed Walsh coefficients:

Partition Average Fitness
∗ ∗ ∗ w0

∗ ∗ f w0 ± w1

∗f∗ w0 ± w2

∗ff w0 ± w1 ± w2 ± w3

f ∗ ∗ w0 ± w4

f ∗ f w0 ± w1 ± w4 ± w5

ff∗ w0 ± w2 ± w4 ± w6

fff w0 ± w1 ± w2 ± w3 ± w4 ± w5 ± w6 ± w7

For example:
f(∗01) = w0 − w1 + w2−w3

Coefficients represent the
contributions linear &
non-linear components of
a given schema have on
fitness.

Notice: Low order schema require very few Walsh coefficients

EClab - Summer Lecture Series – p.16/39

Walsh Analysis of Fitness

Walsh Coefficients & Schema Avg (3)

Now we consider schema averages as the partial sum of
signed Walsh coefficients:

Partition Average Fitness
∗ ∗ ∗ w0

∗ ∗ f w0 ± w1

∗f∗ w0 ± w2

∗ff w0 ± w1 ± w2 ± w3

f ∗ ∗ w0 ± w4

f ∗ f w0 ± w1 ± w4 ± w5

ff∗ w0 ± w2 ± w4 ± w6

fff w0 ± w1 ± w2 ± w3 ± w4 ± w5 ± w6 ± w7

For example:
f(∗01) = w0 − w1 + w2 − w3

Coefficients represent the
contributions linear &
non-linear components of
a given schema have on
fitness.

Notice: Low order schema require very few Walsh coefficients

EClab - Summer Lecture Series – p.16/39

Walsh Analysis of Fitness

Example Fitness Function (1)

OneMax(x) =
∑̀
i=0

xi

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +1.50
001 1.0 1 ∗ ∗ f -0.50
010 1.0 2 ∗f∗ -0.50
011 2.0 3 ∗ff 0
100 1.0 4 f ∗ ∗ -0.50
101 2.0 5 f ∗ f 0
110 2.0 6 ff∗ 0
111 3.0 7 fff 0

EClab - Summer Lecture Series – p.17/39

Walsh Analysis of Fitness

Example Fitness Function (1)

OneMax(x) =
∑̀
i=0

xi

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +1.50
001 1.0 1 ∗ ∗ f -0.50
010 1.0 2 ∗f∗ -0.50
011 2.0 3 ∗ff 0
100 1.0 4 f ∗ ∗ -0.50
101 2.0 5 f ∗ f 0
110 2.0 6 ff∗ 0
111 3.0 7 fff 0

Order 1 (and 0) schema
are the only contribu-
tions.

EClab - Summer Lecture Series – p.17/39

Walsh Analysis of Fitness

Example Fitness Function (2)

An arbitrary bitwise linear function:
f(x) = 10 + 5x1 − 10x2 + 0.1x3

x f(x) j Part wj
000 10.0 0 ∗ ∗ ∗ +7.55
001 15.0 1 ∗ ∗ f -2.50
010 0.0 2 ∗f∗ +5.00
011 5.0 3 ∗ff 0
100 10.1 4 f ∗ ∗ -0.05
101 15.1 5 f ∗ f 0
110 0.1 6 ff∗ 0
111 5.1 7 fff 0

EClab - Summer Lecture Series – p.18/39

Walsh Analysis of Fitness

Example Fitness Function (2)

An arbitrary bitwise linear function:
f(x) = 10 + 5x1 − 10x2 + 0.1x3

x f(x) j Part wj
000 10.0 0 ∗ ∗ ∗ +7.55
001 15.0 1 ∗ ∗ f -2.50
010 0.0 2 ∗f∗ +5.00
011 5.0 3 ∗ff 0
100 10.1 4 f ∗ ∗ -0.05
101 15.1 5 f ∗ f 0
110 0.1 6 ff∗ 0
111 5.1 7 fff 0

Again, orders 1 & 0
schema are the only
contributions.

EClab - Summer Lecture Series – p.18/39

Walsh Analysis of Fitness

Example Fitness Function (2)

An arbitrary bitwise linear function:
f(x) = 10 + 5x1 − 10x2 + 0.1x3

x f(x) j Part wj
000 10.0 0 ∗ ∗ ∗ +7.55
001 15.0 1 ∗ ∗ f -2.50
010 0.0 2 ∗f∗ +5.00
011 5.0 3 ∗ff 0
100 10.1 4 f ∗ ∗ -0.05
101 15.1 5 f ∗ f 0
110 0.1 6 ff∗ 0
111 5.1 7 fff 0

Again, orders 1 & 0
schema are the only
contributions.

This is true of all
1-separable fitness land-
scapes.

EClab - Summer Lecture Series – p.18/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875
1st order: w0−w1−w2−w4 = 2.25
2nd order:

w0−w1−w2+w3−w4+w5+w6 = 2.875
Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875
1st order: w0−w1−w2−w4 = 2.25
2nd order:

w0−w1−w2+w3−w4+w5+w6 = 2.875
Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875

1st order: w0−w1−w2−w4 = 2.25
2nd order:

w0−w1−w2+w3−w4+w5+w6 = 2.875
Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875
1st order: w0 −w1 −w2 −w4 = 2.25

2nd order:
w0−w1−w2+w3−w4+w5+w6 = 2.875

Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875
1st order: w0 −w1 −w2 −w4 = 2.25
2nd order:

w0−w1−w2+w3−w4+w5+w6 = 2.875

Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875
1st order: w0 −w1 −w2 −w4 = 2.25
2nd order:

w0−w1−w2+w3−w4+w5+w6 = 2.875
Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Example Fitness Function (3)

LeadingOnes(x) =
∑̀
i=1

i∏
j=1

xj

Question:
Can we use lower order coeff. to
approximate the opt., x = 111?

x f(x) j Part wj
000 0.0 0 ∗ ∗ ∗ +0.875
001 0.0 1 ∗ ∗ f -0.125
010 0.0 2 ∗f∗ -0.375
011 0.0 3 ∗ff +0.125
100 1.0 4 f ∗ ∗ -0.875
101 1.0 5 f ∗ f +0.125
110 2.0 6 ff∗ +0.375
111 3.0 7 fff -0.125

0th order: w0 = 0.875
1st order: w0 −w1 −w2 −w4 = 2.25
2nd order:

w0−w1−w2+w3−w4+w5+w6 = 2.875
Exact: 3.0

Lower order building
blocks correctly predict
optimum

“In some sense GAs stochastically hillclimb in the space of schemata rather than
in the space of binary strings” (Rana et al., 1998)

EClab - Summer Lecture Series – p.19/39

Walsh Analysis of Fitness

Constructing Deception (1)

Traditional view of GA demands that low
order walsh coefficients “predict” higher
order ones
Now it is easy to see how a deceptive
function can be constructed:

When low order estimates fail to predict the optimum
E.g., For two bit problem where
f(11) > f(00), f(01), f(10) but
f(∗0) > f(∗1) or f(0∗) > f(1∗)
Here w1 > 0 or w2 > 0 permit this

EClab - Summer Lecture Series – p.20/39

Walsh Analysis of Fitness

Constructing Deception (2)

Let’s construct a fully deceptive, 3-bit problem:
To be deceptive, we need:

w1 + w3 > 0, w2 + w3 > 0, and w1 + w2 > 0

w1 + w5 > 0, w4 + w5 > 0, and w1 + w4 > 0

w6 + w4 > 0, w6 + w2 > 0, and w2 + w4 > 0

To preserve optimality:

> w7

w3 + w5 > w2 + w7

w3 + w6 > w1 + w7

w5 + w3 > w2 + w4

w5 + w6 > w4 + w7

w5 + w6 > w1 + w2

w6 + w3 > w1 + w4

We can do this by enumerating the
coefficients by j from 0 to 6, as long
as w7 ≤ −7.

EClab - Summer Lecture Series – p.21/39

Walsh Analysis of Fitness

Constructing Deception (2)

Let’s construct a fully deceptive, 3-bit problem:
To be deceptive, we need:

w1 + w3 > 0, w2 + w3 > 0, and w1 + w2 > 0

w1 + w5 > 0, w4 + w5 > 0, and w1 + w4 > 0

w6 + w4 > 0, w6 + w2 > 0, and w2 + w4 > 0

To preserve optimality:

−(w1 + w2 + w4) > w7

w3 + w5 > w2 + w7

w3 + w6 > w1 + w7

w5 + w3 > w2 + w4

w5 + w6 > w4 + w7

w5 + w6 > w1 + w2

w6 + w3 > w1 + w4

We can do this by enumerating the
coefficients by j from 0 to 6, as long
as w7 ≤ −7.

EClab - Summer Lecture Series – p.21/39

Walsh Analysis of Fitness

Constructing Deception (2)

Let’s construct a fully deceptive, 3-bit problem:
To be deceptive, we need:

w1 + w3 > 0, w2 + w3 > 0, and w1 + w2 > 0

w1 + w5 > 0, w4 + w5 > 0, and w1 + w4 > 0

w6 + w4 > 0, w6 + w2 > 0, and w2 + w4 > 0

To preserve optimality:

−(w1 + w2 + w4) > w7

w3 + w5 > w2 + w7

w3 + w6 > w1 + w7

w5 + w3 > w2 + w4

w5 + w6 > w4 + w7

w5 + w6 > w1 + w2

w6 + w3 > w1 + w4

We can do this by enumerating the
coefficients by j from 0 to 6, as long
as w7 ≤ −7.

EClab - Summer Lecture Series – p.21/39

Walsh Analysis of Fitness

Constructing Deception (2)

Let’s construct a fully deceptive, 3-bit problem:
To be deceptive, we need:

w1 + w3 > 0, w2 + w3 > 0, and w1 + w2 > 0

w1 + w5 > 0, w4 + w5 > 0, and w1 + w4 > 0

w6 + w4 > 0, w6 + w2 > 0, and w2 + w4 > 0

To preserve optimality:

−(w1 + w2 + w4) > w7

w3 + w5 > w2 + w7

w3 + w6 > w1 + w7

w5 + w3 > w2 + w4

w5 + w6 > w4 + w7

w5 + w6 > w1 + w2

w6 + w3 > w1 + w4

We can do this by enumerating the
coefficients by j from 0 to 6, as long
as w7 ≤ −7.

EClab - Summer Lecture Series – p.21/39

Walsh Analysis of Fitness

Constructing Deception (3)

A fully deceptive 3-bit fitness landscape:
x f(x) j Part wj

000 13.0 0 ∗ ∗ ∗ 0
001 11.0 1 ∗ ∗ f +1.0
010 7.0 2 ∗f∗ +2.0
011 -15.0 3 ∗ff +3.0
100 -1.0 4 f ∗ ∗ +4.0
101 -15.0 5 f ∗ f +5.0
110 -15.0 6 ff∗ +6.0
111 15.0 7 fff -8.0

0th order: 0
1st order: 0 - 7 = -7
2nd order: -7 + 14 = 7
Exact: 7 - (-8) = 15

The lower order blocks do not correctly predict the optimum

EClab - Summer Lecture Series – p.22/39

Walsh Analysis of Fitness

Constructing Deception (3)

A fully deceptive 3-bit fitness landscape:
x f(x) j Part wj

000 13.0 0 ∗ ∗ ∗ 0
001 11.0 1 ∗ ∗ f +1.0
010 7.0 2 ∗f∗ +2.0
011 -15.0 3 ∗ff +3.0
100 -1.0 4 f ∗ ∗ +4.0
101 -15.0 5 f ∗ f +5.0
110 -15.0 6 ff∗ +6.0
111 15.0 7 fff -8.0

0th order: 0
1st order: 0 - 7 = -7
2nd order: -7 + 14 = 7
Exact: 7 - (-8) = 15

The lower order blocks do not correctly predict the optimum

EClab - Summer Lecture Series – p.22/39

Walsh Analysis of Fitness

Constructing Deception (3)

A fully deceptive 3-bit fitness landscape:
x f(x) j Part wj

000 13.0 0 ∗ ∗ ∗ 0
001 11.0 1 ∗ ∗ f +1.0
010 7.0 2 ∗f∗ +2.0
011 -15.0 3 ∗ff +3.0
100 -1.0 4 f ∗ ∗ +4.0
101 -15.0 5 f ∗ f +5.0
110 -15.0 6 ff∗ +6.0
111 15.0 7 fff -8.0

0th order: 0
1st order: 0 - 7 = -7
2nd order: -7 + 14 = 7
Exact: 7 - (-8) = 15

The lower order blocks do not correctly predict the optimum

EClab - Summer Lecture Series – p.22/39

Walsh Analysis of Fitness

Operator-Adjusted Fitness

Traditional schema theorem:
m(s, t+ 1) ≥ m(s, t) f(s)

f̄

[
1− pc δ(s)`−1

− pmo(s)
]

Can think in terms of “operator-adjusted” fitness:
m(s, t+ 1) ≥ m(s, t) f

′(s)
f̄

Can formulate operator-adjusted Walsh coefficients,
and obtain f ′(s) this way, as well
w′j = wj

[
1− pc δ(j)`−1

− 2pmo(j)
]

Can compute f ′ in terms of w′, as we did for f and w

EClab - Summer Lecture Series – p.23/39

Walsh Analysis of Fitness

Defining Deception

(Denote the true optimum as f∗)

Near Optimal Set: N = {x : f ∗ − f(x) ≤ ε}
Op-Adj. Near Optimal Set: N ′ = {x : f ′∗ − f ′(x) ≤ ε′},

where ε′ = f ′∗−w0

f∗−w0
ε

Statically Deceptive: N −N ′ 6= ∅
Statically Easy: N −N ′ = ∅
Strictly Statically Easy: N = N ′

Idea: Will a population stay “near” the global optimum under the influence of
the genetic operators once it is there?

A flaw: Goldberg calls this “convergence point” an attractor. In fact, it is not
necessarily one. The definition of stable fixed point and attracting fixed point are
not the same.

EClab - Summer Lecture Series – p.24/39

Walsh Analysis of Fitness

Defining Deception

(Denote the true optimum as f∗)

Near Optimal Set: N = {x : f ∗ − f(x) ≤ ε}
Op-Adj. Near Optimal Set: N ′ = {x : f ′∗ − f ′(x) ≤ ε′},

where ε′ = f ′∗−w0

f∗−w0
ε

Statically Deceptive: N −N ′ 6= ∅
Statically Easy: N −N ′ = ∅
Strictly Statically Easy: N = N ′

Idea: Will a population stay “near” the global optimum under the influence of
the genetic operators once it is there?

A flaw: Goldberg calls this “convergence point” an attractor. In fact, it is not
necessarily one. The definition of stable fixed point and attracting fixed point are
not the same.

EClab - Summer Lecture Series – p.24/39

Walsh Analysis of Fitness

Defining Deception

(Denote the true optimum as f∗)

Near Optimal Set: N = {x : f ∗ − f(x) ≤ ε}
Op-Adj. Near Optimal Set: N ′ = {x : f ′∗ − f ′(x) ≤ ε′},

where ε′ = f ′∗−w0

f∗−w0
ε

Statically Deceptive: N −N ′ 6= ∅
Statically Easy: N −N ′ = ∅
Strictly Statically Easy: N = N ′

Idea: Will a population stay “near” the global optimum under the influence of
the genetic operators once it is there?

A flaw: Goldberg calls this “convergence point” an attractor. In fact, it is not
necessarily one. The definition of stable fixed point and attracting fixed point are
not the same.

EClab - Summer Lecture Series – p.24/39

Walsh Analysis of Fitness

What has been learned?

Analysis of deception
Measures the degree of deception in terms of the potential shift of
points in N ′ due to changes in f ′.

Sensitivity analysis of deception
Measures the degree to which small changes in post-operator fit-
ness affect the degree of deception (Goldberg, 1989b).

Signal to noise analysis
Measures the ratio of information provided by schema helpful
for convergence, versus information which is harmful (Rudnick,
1991).

Walsh coefficients are insufficient to infer optima
NP hard problems exist for which all non-zero Walsh coefficients
can be computed in linear time. � either P = NP or the exact
linear and non-linear interactions of a function is insufficient to
infer the global optimum in polynomial time (Rana, 1998).

EClab - Summer Lecture Series – p.25/39

Walsh Analysis of Fitness

Criticism of Walsh Analysis

Deception 6≡ difficult
There are problems that meet “deceptive” criteria that are easy
for a GA, as well as the reverse (Greffenstette, 1993) .

Walsh analysis does not necessarily agree with
intuitive notions of “deception”

Deception is not necessarily correlated with high order Walsh co-
efficients (Goldberg, 1990).

Relies on hypotheses of Schema Theory (e.g, BBH)
Not everyone is convinced of ST’s utility or correctness in terms
of dynamical prediction (Vose, 1993).

Misses the fundamental “useful” connection between
the Walsh basis and a GA

The Walsh transform’s real power lies in its ability to simplify
and expose underlying properties of transformations performed
by the steps in a GA generation, not in the analysis of fitness
landscapes (Vose, t.r.).

EClab - Summer Lecture Series – p.26/39

Outline of Discussion

Part I: Overview of the Walsh Transform
√

Part II: Walsh Analysis of Fitness
√

Part III: Walsh Analysis of Mixing Matrices ←
Part IV: Conclusions

EClab - Summer Lecture Series – p.27/39

Walsh Analysis of Mixing Matrices

Overview of the Vose SGA & Mixing (1)

Representation of individuals are discrete,
fixed-length strings using alphabets of arbitrary
cardinality (we focus on binary)
Populations are infinite in size
Model the effects of selection and variation in a
generation as a discrete time dynamical system
Interested in analyzing the expected dynamical
behavior in a real GA

EClab - Summer Lecture Series – p.28/39

Walsh Analysis of Mixing Matrices

Overview of the Vose SGA & Mixing (2)

Population state represented as a vector of
proportions of each genotype in population:

∆n = {~x : xi ∈ <, xi ≥ 0,
∑

i xi = 1}
Dynamical map is a composition of steps in a GA
generation:

G =M◦ S ◦ F
F assigns fitness, F : ∆n → <n

S redistributes proportions due to selection, S : <n → ∆n

M applies mutation and recombination effects, M : ∆n → ∆n

Our interest is in studying mixing, so let’s simplify
things:

~x′ = S (F (~x))

~x′′ = M (~x′)

EClab - Summer Lecture Series – p.29/39

Walsh Analysis of Mixing Matrices

The Mixing Matrix

Let σk be the k permutation matrix and ⊕mean XOR

Define a mixing probabilities matrix M (0), or just M :
M = Pr[parent i × parent j → child 0]

We obtain M (k) generally by permuting M :
M (k) = Mi⊕k,j⊕k, ∀i, j

So, Mk = (~x′)T M (k)~x′

Equivalently, we can permute population vectors:
Mk = (σk~x

′)T M (σk~x
′)

Or, ~x′′ =
∑

i,j xixjMi⊕k,j⊕k

EClab - Summer Lecture Series – p.30/39

Walsh Analysis of Mixing Matrices

From Fourier to Walsh (1)

We can use linear algebra methods to performing
Fourier transforms

Define a Fourier Matrix for alphabets of arbitrary
cardinality, c

Wij = 1√
n
e

2π
√
−1(iT j)

c

Now the Fourier transform is the mapping ~x 7→W~xC

(C represents complex conjugate)

For simplicity, we write:

Â = WACWC

x̂ = W~xC

EClab - Summer Lecture Series – p.31/39

Walsh Analysis of Mixing Matrices

From Fourier to Walsh (2)

In the binary case (c = 2), we eliminate conjugation:

Wij =
1√
n
e

2π
√

−1(iT j)
c =

1√
n
eπ

√
−1(iT j)

ez
√
−1 = cos (z) +

√
−1 sin (z) but here iT j must be a whole number

� √
−1 sin

�

π

�

iT j

� �

= 0 and cos
�

π

�

iT j

� �

= ±1

Wij =
1√
n

(−1)(iT j)

x̂ =
1√
n
W ′~x

From Part II we have:
wj =

1

2`
x

f(x) ψj (y(x)) =
1

n
x

f(x) (−1)(xT j) =
1

n
x

f(x)ψxj

~w =
1

n
W ′ ~f

EClab - Summer Lecture Series – p.32/39

Walsh Analysis of Mixing Matrices

From Fourier to Walsh (2)

In the binary case (c = 2), we eliminate conjugation:

Wij =
1√
n
e

2π
√

−1(iT j)
c =

1√
n
eπ

√
−1(iT j)

ez
√
−1 = cos (z) +

√
−1 sin (z) but here iT j must be a whole number

� √
−1 sin

�

π

�

iT j

� �

= 0 and cos
�

π

�

iT j

� �

= ±1

Wij =
1√
n

(−1)(iT j)

x̂ = 1√
n
W ′~x

From Part II we have:
wj =

1

2`
x

f(x) ψj (y(x)) =
1

n
x

f(x) (−1)(xT j) =
1

n
x

f(x)ψxj

~w = 1

n
W ′ ~f

In fact, the Walsh transform is the
Fourier transform, when c = 2

EClab - Summer Lecture Series – p.32/39

Walsh Analysis of Mixing Matrices

Fun with Matrices

Define the twist A∗ of a n× n matrix A by
(A∗)i,j = Aj⊕i,−i
Define the conjugate transpose as the transpose of the
complex conjugate of a matrix, denoted AH

{H,∧, ∗} are interrelated operators. For example:

ÂH = ÂH

(
(AH)∗

)H
= (A∗)∗ =

(̂
Â

)∗

(AH)H =
̂̂
A = ((A∗)∗)

∗
= identity

The point: complicated sequences of these operations
can be simplified

EClab - Summer Lecture Series – p.33/39

Walsh Analysis of Mixing Matrices

Applying the Walsh Transform toM
A mixing matrix is dense under positive mutation,
but has a sparse Fourier transform
If mutation is zero, M = M̂

M̂ ∗ is lower triangular
If mutation is zero, M ∗ is upper triangular

Why do we care?
Because these are ways to simplify M for the gen-
eral case, such that more complicated analysis may be
more tractable.

EClab - Summer Lecture Series – p.34/39

Walsh Analysis of Mixing Matrices

Applying the Walsh Transform toM
A mixing matrix is dense under positive mutation,
but has a sparse Fourier transform
If mutation is zero, M = M̂

M̂ ∗ is lower triangular
If mutation is zero, M ∗ is upper triangular

Why do we care?

Because these are ways to simplify M for the gen-
eral case, such that more complicated analysis may be
more tractable.

EClab - Summer Lecture Series – p.34/39

Walsh Analysis of Mixing Matrices

Applying the Walsh Transform toM
A mixing matrix is dense under positive mutation,
but has a sparse Fourier transform
If mutation is zero, M = M̂

M̂ ∗ is lower triangular
If mutation is zero, M ∗ is upper triangular

Why do we care?
Because these are ways to simplify M for the gen-
eral case, such that more complicated analysis may be
more tractable.

EClab - Summer Lecture Series – p.34/39

Walsh Analysis of Mixing Matrices

What has been learned?

We can use the twist to more easily obtain the
differential of mixing:

dMx = 2
∑

u σ
T
uM

∗σuxu
Some mathematical properties can be elicited from
transformed mixing matrix:

Access to the spectrum of M obtained through M∗

Types of invariances under mixing exposed by Walsh transform
If mutation is positive, largest eigenvalue is 2 and all other eigenvalues are
inside the unit disk

Efficiency improvement in calculating infinite
population model from O

(
c3`

)
to O

(
c`lg3

)

Walsh provides a way to elicit model of inverse GA
YADGE - Yet Another Derivation of Geiringer’s
Equation

EClab - Summer Lecture Series – p.35/39

Outline of Discussion

Part I: Overview of the Walsh Transform
√

Part II: Walsh Analysis of Fitness
√

Part III: Walsh Analysis of Mixing Matrices
√

Part IV: Conclusions ←

EClab - Summer Lecture Series – p.36/39

Conclusions

What is “Walsh Analysis”?

Analysis (of a GA) using Walsh Transform
Analysis from perspective of the Walsh basis
It is really just a different viewpoint

Might facilitate analysis by changing the viewpoint s.t.
our intuitional ideas are exposed for deeper
exploration (e.g., Goldberg)
Might facilitate analysis by changing the viewpoint s.t.
certain types of mathematical derivations become
more tractable (e.g., Vose)

Walsh Analysis is a tool to be used in conjunction with
other methods, like a pair of work goggles.

EClab - Summer Lecture Series – p.37/39

Conclusions

What is “Walsh Analysis”?

Analysis (of a GA) using Walsh Transform
Analysis from perspective of the Walsh basis
It is really just a different viewpoint

Might facilitate analysis by changing the viewpoint s.t.
our intuitional ideas are exposed for deeper
exploration (e.g., Goldberg)
Might facilitate analysis by changing the viewpoint s.t.
certain types of mathematical derivations become
more tractable (e.g., Vose)

Walsh Analysis is a tool to be used in conjunction with
other methods, like a pair of work goggles.

EClab - Summer Lecture Series – p.37/39

Conclusions

Is Walsh Analysis Useful?

Not a fair question...depends on the context
of the analysis being done

Is analysis of schemata and building blocks helpful?
Then perhaps Walsh Analysis is helpful for studying
schema theory.
Is understanding the properties of a dynamical
systems model of a GA helpful? Then perhaps Walsh
Analysis is helpful for uncovering such properties.

There may very well be other uses of this
“lens” in other contexts
Seems powerful, but is limited by limitations
of existing theory which uses it

EClab - Summer Lecture Series – p.38/39

Conclusions

References

Bethke, A. Genetic Algorithms as Function Optimizers. Doctoral thesis,
University of Michigan. 1980

Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning.
1989

Goldberg, D. Genetic Algorithms and Wlahs Functions: Part I, A Gentle
Introduction. Compplex Systems 3. 1989

Goldberg, D. Genetic Algorithms and Wlahs Functions: Part II, Deception and Its
Analysis. Compplex Systems 3. 1989

Rana, S. et al. A tractable Walsh Analysis of SAT and its Implications for Genetic
Algorithms. In Proceedings from the 1998 AAAI. 1998

Rudnick, M. and Goldberg, D. Signal, Noise, and Genetic Algorithms. Technical
Report. 1991

Vose, M. and Wright, A. The Simple Genetic Algorithm and the Walsh Transform:
part I, Theory. Technical Report (ECJ in press). 1998

Vose, M. and Wright, A. The Simple Genetic Algorithm and the Walsh Transform:
part II, The Inverse. Technical Report (ECJ in press). 1998

Vose, M. The Simple Genetic Algorithm: Foundations and Theory. 1999

EClab - Summer Lecture Series – p.39/39

	Outline of Discussion
	What is Walsh Analysis?
	What is a Basis?
	Basis Transformations
	What is the Walsh Transform?
	Outline of Discussion
	Fitness & the Standard Basis
	Overview of Schema
	Walsh Functions (1)
	Walsh Functions (2)
	Walsh Functions (3)
	Walsh Functions (4)
	Walsh Coefficients & Schema Avg (1)
	Walsh Coefficients & Schema Avg (2)
	Walsh Coefficients & Schema Avg (3)
	Example Fitness Function (1)
	Example Fitness Function (2)
	Example Fitness Function (3)
	Constructing Deception (1)
	Constructing Deception (2)
	Constructing Deception (3)
	Operator-Adjusted Fitness
	Defining Deception
	What has been learned?
	Criticism of Walsh Analysis
	Outline of Discussion
	Overview of the Vose SGA & Mixing (1)
	Overview of the Vose SGA & Mixing (2)
	The Mixing Matrix
	From Fourier to Walsh (1)
	From Fourier to Walsh (2)
	Fun with Matrices
	Applying the Walsh Transform to ${cal M}$
	What has been learned?
	Outline of Discussion
	What is ``Walsh Analysis''?
	Is Walsh Analysis Useful?
	References

