
Introduction to Schema Theory
A survey lecture of pessimistic & exact schema theory

William C. Liles
R. Paul Wiegand

wliles@cs.gmu.edu

paul@tesseract.org

ECLab
George Mason University

EClab - Summer Lecture Series – p.1/48

Outline of Discussion

Part I: Overview of Schema Theory ←
Part II: Pessimistic Schema Theory

Part III: Exact Schema Theory

Part IV: Conclusions

EClab - Summer Lecture Series – p.2/48

Overview of Schema Theory

What is a Theory?

Set of analytical tools to help answer
questions
Particular domain in which to ask questions

What do theories do?
Predict
Explain

EClab - Summer Lecture Series – p.3/48

Overview of Schema Theory

What is a Theory?

Set of analytical tools to help answer
questions
Particular domain in which to ask questions

What do theories do?
Predict
Explain

EClab - Summer Lecture Series – p.3/48

Overview of Schema Theory

What are Schemata?

Can view Schemata in many ways
Templates specifying groups (sets) of ”similar”
chromosomes
Partitions of genome space
Descriptions of hyperplanes through genome space
Sets of search points sharing some ”syntactic feature”

Example for binary representation:

”*”⇔ ”Don’t care”

Schema Members
1000

1**0 1010
1100
1110

EClab - Summer Lecture Series – p.4/48

Overview of Schema Theory

What are Schemata?

Can view Schemata in many ways
Templates specifying groups (sets) of ”similar”
chromosomes
Partitions of genome space
Descriptions of hyperplanes through genome space
Sets of search points sharing some ”syntactic feature”

Example for binary representation:

”*”⇔ ”Don’t care”

Schema Members
1000

1**0 1010
1100
1110

EClab - Summer Lecture Series – p.4/48

Overview of Schema Theory

What is Schema Theory?

Describes how schemata are expected to
propagate from one generation to the next
More specifically:

Divides the space into subspaces
Quantifies these subspaces
Explains how & why individuals move between
subspaces

EClab - Summer Lecture Series – p.5/48

Overview of Schema Theory

What are Schema Theorems?

Specific analytical models
Usually reflect particular representational
choices
May provide only a lower bound schemata
growth
May provide tight bounds on schemata
growth

EClab - Summer Lecture Series – p.6/48

Overview of Schema Theory

The Traditional Schema Theorem

Pessimistic prediction of schema growth in a GA
NOT the same as the Building Block Hypothesis

From Michalewicz, 1992:
SCHEMA THEOREM: Short, low-order, above-
average schemata receive exponentially increasing
trials in subsequent generations of a genetic algo-
rithm

Prediction

BUILDING BLOCK HYPOTHESIS: A GA seeks near
optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called
the building blocks.

Explanation

EClab - Summer Lecture Series – p.7/48

Overview of Schema Theory

The Traditional Schema Theorem

Pessimistic prediction of schema growth in a GA
NOT the same as the Building Block Hypothesis

From Michalewicz, 1992:
SCHEMA THEOREM: Short, low-order, above-
average schemata receive exponentially increasing
trials in subsequent generations of a genetic algo-
rithm

Prediction

BUILDING BLOCK HYPOTHESIS: A GA seeks near
optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called
the building blocks.

Explanation

EClab - Summer Lecture Series – p.7/48

Overview of Schema Theory

The Traditional Schema Theorem

Pessimistic prediction of schema growth in a GA
NOT the same as the Building Block Hypothesis

From Michalewicz, 1992:
SCHEMA THEOREM: Short, low-order, above-
average schemata receive exponentially increasing
trials in subsequent generations of a genetic algo-
rithm

Prediction

BUILDING BLOCK HYPOTHESIS: A GA seeks near
optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called
the building blocks.

Explanation

EClab - Summer Lecture Series – p.7/48

Overview of Schema Theory

The Traditional Schema Theorem

Pessimistic prediction of schema growth in a GA
NOT the same as the Building Block Hypothesis

From Michalewicz, 1992:
SCHEMA THEOREM: Short, low-order, above-
average schemata receive exponentially increasing
trials in subsequent generations of a genetic algo-
rithm

Prediction

BUILDING BLOCK HYPOTHESIS: A GA seeks near
optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called
the building blocks.

Explanation

EClab - Summer Lecture Series – p.7/48

Overview of Schema Theory

The Traditional Schema Theorem

Pessimistic prediction of schema growth in a GA
NOT the same as the Building Block Hypothesis

From Michalewicz, 1992:
SCHEMA THEOREM: Short, low-order, above-
average schemata receive exponentially increasing
trials in subsequent generations of a genetic algo-
rithm

Prediction

BUILDING BLOCK HYPOTHESIS: A GA seeks near
optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called
the building blocks.

Explanation

EClab - Summer Lecture Series – p.7/48

Overview of Schema Theory

Advantages of Schema Theory

Appeals to our intuition of how problems
may be solved (i.e., building blocks)
Can be formulated in a concise way, such
that specific instantiations for particular EAs
can be ”plugged in” to main theorems
With exact models, we can get correct
predictions of expectation, as well as bounds
on the probability of those expectations

EClab - Summer Lecture Series – p.8/48

Overview of Schema Theory

Criticism of the Schema Theory

Results & conclusions of limited use. Why?

Traditionally produces a lower-bound expectation for
schemata growth
Not easy to predict global behavior without a recursive
solution
Operates under the assumption that knowing what
schemata are doing helps us understand how & why
the GA is working (it doesn’t always)

Applicability is low. Why?
Large effort to produce very specific models
Most EAs modeled under ST are simple EAs, not used
in practice

EClab - Summer Lecture Series – p.9/48

Overview of Schema Theory

Criticism of the Schema Theory

Results & conclusions of limited use. Why?
Traditionally produces a lower-bound expectation for
schemata growth
Not easy to predict global behavior without a recursive
solution
Operates under the assumption that knowing what
schemata are doing helps us understand how & why
the GA is working (it doesn’t always)

Applicability is low. Why?
Large effort to produce very specific models
Most EAs modeled under ST are simple EAs, not used
in practice

EClab - Summer Lecture Series – p.9/48

Overview of Schema Theory

Criticism of the Schema Theory

Results & conclusions of limited use. Why?
Traditionally produces a lower-bound expectation for
schemata growth
Not easy to predict global behavior without a recursive
solution
Operates under the assumption that knowing what
schemata are doing helps us understand how & why
the GA is working (it doesn’t always)

Applicability is low. Why?

Large effort to produce very specific models
Most EAs modeled under ST are simple EAs, not used
in practice

EClab - Summer Lecture Series – p.9/48

Overview of Schema Theory

Criticism of the Schema Theory

Results & conclusions of limited use. Why?
Traditionally produces a lower-bound expectation for
schemata growth
Not easy to predict global behavior without a recursive
solution
Operates under the assumption that knowing what
schemata are doing helps us understand how & why
the GA is working (it doesn’t always)

Applicability is low. Why?
Large effort to produce very specific models
Most EAs modeled under ST are simple EAs, not used
in practice

EClab - Summer Lecture Series – p.9/48

Outline of Discussion

Part I: Overview of Schema Theory
√

Part II: Pessimistic Schema Theory ←
Part III: Exact Schema Theory

Part IV: Conclusions

EClab - Summer Lecture Series – p.10/48

Pessimistic Schema Theory

Traditional Schema Theory

Attempts to give insight
About how GAs work
Describes how the expected number of schemata will
at least grow in the next generation

Generally assumes
Binary, fixed-length representation
Bit flip mutation, 1-point crossover
Proportional selection

E[# strs ∈ schema @ gen t +1]≥ (# strs ∈ schema @ t)·
(rel. value of schema)·
(prob ∼destroyed)

EClab - Summer Lecture Series – p.11/48

Pessimistic Schema Theory

Traditional Schema Theory

Attempts to give insight
About how GAs work
Describes how the expected number of schemata will
at least grow in the next generation

Generally assumes
Binary, fixed-length representation
Bit flip mutation, 1-point crossover
Proportional selection

E[# strs ∈ schema @ gen t +1]≥ (# strs ∈ schema @ t)·
(rel. value of schema)·
(prob ∼destroyed)

EClab - Summer Lecture Series – p.11/48

Pessimistic Schema Theory

Notation

Individual are fixed-length binary strings,
v ∈ {0,1}l

Schema are fixed length ternary strings,
s ∈ {0,1,∗}l

Schema define a set of individual strings.
v ∈ s iff ∀i ∈ {0 . . . l},vi = si ∨ si = ∗
Population at time t is a set of binary strings,
Pt = {v(1),v(2), . . . ,v(n)}, v(i) ∈ {0,1}l

Match is no. of strings in Pt also in schema s.
m(s, t) = ‖{v ∈ Pt ,v ∈ s}‖

EClab - Summer Lecture Series – p.12/48

Pessimistic Schema Theory

Notation (continued)

Mean fitness of strings in schema s also in Pt ,
f (s, t)
Mean fitness of the population, f̄ (t)
Probability of mutation, pm

Probability of crossover, pc

E[m(s, t +1)]≥ m(s, t) f (s,t)
f̄ (t)

Pr[surv mut]Pr[surv xover]

EClab - Summer Lecture Series – p.13/48

Pessimistic Schema Theory

Notation (continued)

Mean fitness of strings in schema s also in Pt ,
f (s, t)
Mean fitness of the population, f̄ (t)
Probability of mutation, pm

Probability of crossover, pc

E[m(s, t +1)]≥ m(s, t) f (s,t)
f̄ (t)

Pr[surv mut]Pr[surv xover]

EClab - Summer Lecture Series – p.13/48

Pessimistic Schema Theory

Measures of Schema

Order of schema is the # of fixed positions,
o(s) = ‖{∀i ∈ {1 . . . l},si 6= ∗}‖
Defining length is the longest distance
between two fixed positions,

δ(s) = max
(
|i− j|, ∀i, j ∈ {1 . . . l},si 6= ∗ ∧ s j 6= ∗

)

Example:
s = * 0 * 1 1 * * 1 *

o(s) = 4

δ(s) = 6

EClab - Summer Lecture Series – p.14/48

Pessimistic Schema Theory

Measures of Schema

Order of schema is the # of fixed positions,
o(s) = ‖{∀i ∈ {1 . . . l},si 6= ∗}‖
Defining length is the longest distance
between two fixed positions,

δ(s) = max
(
|i− j|, ∀i, j ∈ {1 . . . l},si 6= ∗ ∧ s j 6= ∗

)

Example:
s = * 0 * 1 1 * * 1 *

o(s) = 4

δ(s) = 6

EClab - Summer Lecture Series – p.14/48

Pessimistic Schema Theory

Surviving Mutation

Probability no mutation at a given position
occurs is 1− pm
All mutations are independent
We only care about the fixed positions
So probability schema survives disruption is
(1− pm)o(s)

EClab - Summer Lecture Series – p.15/48

Pessimistic Schema Theory

Surviving Crossover

A crossover event which does not divide the
defined positions in the schema is harmless
The probability the crossover breaks the
schema is δ(s)

l−1
Thus the probability to survive crossover is
1− pc

δ(s)
l−1

EClab - Summer Lecture Series – p.16/48

Pessimistic Schema Theory

The Traditional Schema Theorem

E[m(s, t +1)]≥ m(s, t) f (s,t)
f̄ (t)

(1− pm)o(s)
(

1− pc
δ(s)
l−1

)

But we can do better, since this ignores the possibility that
you select a breeding partner from the same schema...

m(s, t) f (s,t)
f̄ (t)

(1− pm)o(s)
((

1− pc
δ(s)
l−1

)(

1− m(s,t) f (s,t)
n· f̄ (t)

))

More generally, we can replace the selection method...

n · p(s, t)(1− pm)o(s)
((

1− pc
δ(s)
l−1

)

(1− p(s, t))
)

Where p(s, t) is the probability of selecting schema s at gen-

eration t. For proportional selection p(s, t) = m(s,t)
n · f (s,t)

f̄ (t)
.

EClab - Summer Lecture Series – p.17/48

Pessimistic Schema Theory

The Traditional Schema Theorem

E[m(s, t +1)]≥ m(s, t) f (s,t)
f̄ (t)

(1− pm)o(s)
(

1− pc
δ(s)
l−1

)

But we can do better, since this ignores the possibility that
you select a breeding partner from the same schema...

m(s, t) f (s,t)
f̄ (t)

(1− pm)o(s)
((

1− pc
δ(s)
l−1

)(

1− m(s,t) f (s,t)
n· f̄ (t)

))

More generally, we can replace the selection method...

n · p(s, t)(1− pm)o(s)
((

1− pc
δ(s)
l−1

)

(1− p(s, t))
)

Where p(s, t) is the probability of selecting schema s at gen-

eration t. For proportional selection p(s, t) = m(s,t)
n · f (s,t)

f̄ (t)
.

EClab - Summer Lecture Series – p.17/48

Pessimistic Schema Theory

The Traditional Schema Theorem

E[m(s, t +1)]≥ m(s, t) f (s,t)
f̄ (t)

(1− pm)o(s)
(

1− pc
δ(s)
l−1

)

But we can do better, since this ignores the possibility that
you select a breeding partner from the same schema...

m(s, t) f (s,t)
f̄ (t)

(1− pm)o(s)
((

1− pc
δ(s)
l−1

)(

1− m(s,t) f (s,t)
n· f̄ (t)

))

More generally, we can replace the selection method...

n · p(s, t)(1− pm)o(s)
((

1− pc
δ(s)
l−1

)

(1− p(s, t))
)

Where p(s, t) is the probability of selecting schema s at gen-

eration t. For proportional selection p(s, t) = m(s,t)
n · f (s,t)

f̄ (t)
.

EClab - Summer Lecture Series – p.17/48

Pessimistic Schema Theory

What does this tell us?

.5

�

�

�
�

s s
Helps explain how m(s, t) is
affected by GA operators
Helps predict how m(s, t) varies
from one generation to the next
Provides only a lower bound

EClab - Summer Lecture Series – p.18/48

Pessimistic Schema Theory

What does this tell us?

.5

�

�

�
�

s s
Helps explain how m(s, t) is
affected by GA operators
Helps predict how m(s, t) varies
from one generation to the next
Provides only a lower bound

Want appropriate schema defn
(granularity)
Want appropriate measures
(meaning)

EClab - Summer Lecture Series – p.18/48

Pessimistic Schema Theory

What does this tell us?

.5

�

�

�
�

s s
Helps explain how m(s, t) is
affected by GA operators
Helps predict how m(s, t) varies
from one generation to the next
Provides only a lower bound

Want appropriate schema defn
(granularity)
Want appropriate measures
(meaning)

No. indiv in schema
Avg fitness of schema
Avg fitness of pop
Disruption of ops
etc.

EClab - Summer Lecture Series – p.18/48

Pessimistic Schema Theory

Genetic Programming Schemata

We can express schemata as a list of ordered
pairs

0 * 1 * * 1 1 ⇔ [(0,1), (1,3), (11,6)]

Supposing v ∈ {a,b,c,d}l,
a * b c * a d ⇔ [(a,1), (bc,3), (ad,6)]

Traditional ST specifies the complete string,
so position is important.
But we could match partial strings...
And we could match strings independent of
position...

EClab - Summer Lecture Series – p.19/48

Pessimistic Schema Theory

GP Schemata (continued)

No. of individuals matching s in Pt is m(s, t)
No. of substrings matching s in Pt is ι(s, t)
(instantiations)

Example Population:
a b a a c
a c c a b
c c c c b
a b c a b

m([ab], t) = 3, ι([ab], t) = 4

m([a,b], t) = 4, ι([a,b], t) = 12

EClab - Summer Lecture Series – p.20/48

Pessimistic Schema Theory

Rosca’s Rooted Tree Schemata

Syntactically:
Every schema is a contiguous tree fragment
Every schema includes the root node of the tree
Use ’#’ character rather than ’*’ for don’t care symbol

Semantically:
A schema defines a set of programs
s = (- # y) defines the set of programs: -

?

...
...

y

EClab - Summer Lecture Series – p.21/48

Pessimistic Schema Theory

Rosca’s Rooted Tree Schemata

Syntactically:
Every schema is a contiguous tree fragment
Every schema includes the root node of the tree
Use ’#’ character rather than ’*’ for don’t care symbol

Semantically:
A schema defines a set of programs
s = (- # y) defines the set of programs: -

?

...
...

yFor example: v = (- (+ x z) y)

EClab - Summer Lecture Series – p.21/48

Pessimistic Schema Theory

Rosca’s Rooted Tree Schemata

Syntactically:
Every schema is a contiguous tree fragment
Every schema includes the root node of the tree
Use ’#’ character rather than ’*’ for don’t care symbol

Semantically:
A schema defines a set of programs
s = (- # y) defines the set of programs: -

?

...
...

yFor example: v = (- (+ x z) y)

-

+

x z

y

EClab - Summer Lecture Series – p.21/48

Pessimistic Schema Theory

Rosca’s Schemata Notation/Measures

Size of program v matching schema s is N(v)
The fitness of program v is f (v)
The order of schema is number of defining
symbols it contains, O(v)
The population at time t is the multiset P(t)
All programs in P(t) which are also members
of the schema s is denoted s∩P(t)
The probability (per child) that mutation is
applied is p′m

EClab - Summer Lecture Series – p.22/48

Pessimistic Schema Theory

Rosca’s Schema Theorem

E[m(s, t +1)]≥
m(s, t) f (s,t)

f̄ (t)

[

1− (p′m + pc)
∑

v∈s∩P(t)
O(s)
N(v)

f (v)�

v∈s∩P(t) f (v)

]

Divide space into subspaces containing programs of
different sizes and shapes

EClab - Summer Lecture Series – p.23/48

Pessimistic Schema Theory

Rosca’s Schema Theorem

E[m(s, t +1)]≥

m(s, t) f (s,t)
f̄ (t)









1− (p′m + pc)
∑

v∈s∩P(t)

Frag. of inst.
︷ ︸︸ ︷

O(s)
N(v)

f (v)�

v∈s∩P(t) f (v)









Divide space into subspaces containing programs of
different sizes and shapes

Estimate fragility of schema instances

EClab - Summer Lecture Series – p.23/48

Pessimistic Schema Theory

Rosca’s Schema Theorem

E[m(s, t +1)]≥

m(s, t) f (s,t)
f̄ (t)











1− (p′m + pc)
∑

v∈s∩P(t)

Frag. of inst.
︷ ︸︸ ︷

O(s)
N(v)

f (v)
∑

v∈s∩P(t) f (v)
︸ ︷︷ ︸

Prob disrupting s











Divide space into subspaces containing programs of
different sizes and shapes

Estimate fragility of schema instances

Use wt’d sum & prob of seln. to est. prob. of
disrupting schema

EClab - Summer Lecture Series – p.23/48

Pessimistic Schema Theory

Poli-Langdon Schemata

Fixed size and shape
Set of functions is denoted, F
Set of terminals is denoted, T
The ”=” symbol is ”don’t care” for a single
function or terminal
Schema s is a rooted tree composed of nodes
from F ∪T ∪{=}

For example: F ∈ {+,−,∗,/},T ∈ {1, . . . ,9,x,y,z}
+

*

2 x

/

y z

∈
=

=

2 x

/

= z

EClab - Summer Lecture Series – p.24/48

Pessimistic Schema Theory

Poli-Langdon Schemata

Fixed size and shape
Set of functions is denoted, F
Set of terminals is denoted, T
The ”=” symbol is ”don’t care” for a single
function or terminal
Schema s is a rooted tree composed of nodes
from F ∪T ∪{=}

For example: F ∈ {+,−,∗,/},T ∈ {1, . . . ,9,x,y,z}
+

*

2 x

/

y z

∈
=

=

2 x

/

= z
EClab - Summer Lecture Series – p.24/48

Pessimistic Schema Theory

Poli-Langdon ST Notation/Measures

The order is the number of non-= symbols of
the schema, O(s)
The length is the total number of nodes in
the schema, N(s)
The defining length is the number of links in
the minimum tree fragment including all
non-= symbols in a schema, L(s)

For example:
+

-

2 x

=
L = 3

O = 4

=

-

2 =

=
L = 1

O = 2

+

=

= x

=
L = 2

O = 2

EClab - Summer Lecture Series – p.25/48

Pessimistic Schema Theory

Poli-Langdon ST Notation/Measures

The order is the number of non-= symbols of
the schema, O(s)
The length is the total number of nodes in
the schema, N(s)
The defining length is the number of links in
the minimum tree fragment including all
non-= symbols in a schema, L(s)

For example:
+

-

2 x

=
L = 3

O = 4

=

-

2 =

=
L = 1

O = 2

+

=

= x

=
L = 2

O = 2

EClab - Summer Lecture Series – p.25/48

Pessimistic Schema Theory

Poli-Langdon ST Notation/Measures

The zeroth order schema with the same
structure as schema s is G(s)
The conditional prob. that s is disrupted by
x-over from parent not in G(s) is pdi f f

The prob. of selecting the s from population
at time t is p(s, t)

Schema s:

=

*

3 *

= z

/

y =

Schema G(s):

=

=

= =

= =

=

= =

EClab - Summer Lecture Series – p.26/48

Pessimistic Schema Theory

Poli-Langdon ST Notation/Measures

The zeroth order schema with the same
structure as schema s is G(s)
The conditional prob. that s is disrupted by
x-over from parent not in G(s) is pdi f f

The prob. of selecting the s from population
at time t is p(s, t)

Schema s:

=

*

3 *

= z

/

y =

Schema G(s):

=

=

= =

= =

=

= =

EClab - Summer Lecture Series – p.26/48

Pessimistic Schema Theory

GP One-Point Crossover

+

*

2 +

x y

/

y z

/

-

x y

*

z +

z y

Align the two parents

EClab - Summer Lecture Series – p.27/48

Pessimistic Schema Theory

GP One-Point Crossover

+

*

2 +

x y

/

y z

/

-

x y

*

z +

z y

Align the two parents
Identify the region which is struct. common

EClab - Summer Lecture Series – p.27/48

Pessimistic Schema Theory

GP One-Point Crossover

+

*

2 +

x y

/
/

y z

/

-

x y

*
/

z +

z y

Align the two parents
Identify the region which is struct. common
Choose a x-over pt from within that region

EClab - Summer Lecture Series – p.27/48

Pessimistic Schema Theory

GP One-Point Crossover

+

*

2 +

x y

*
◦

z +

z y

/

-

x y

/
◦

y z

Align the two parents
Identify the region which is struct. common
Choose a x-over pt from within that region
Perform subtree crossover at that point

EClab - Summer Lecture Series – p.27/48

Pessimistic Schema Theory

Poli-Langdon Theorem (pess, 1-pt x-over)

E[m(s, t +1)]≥ n · p(s, t)
︸ ︷︷ ︸

selection

(1− pm)O(s)

︸ ︷︷ ︸

mutation
{

1− pc

[

pdi f f (t)(1− p(G(s), t)+ L(s)
N(s)(p(G(s), t)− p(s, t))

]}

Pessimistic ST for 1-pt crossover using any selection

EClab - Summer Lecture Series – p.28/48

Pessimistic Schema Theory

Poli-Langdon Theorem (pess, 1-pt x-over)

E[m(s, t +1)]≥ n · p(s, t)
︸ ︷︷ ︸

selection

(1− pm)O(s)

︸ ︷︷ ︸

mutation





1− pc







pdi f f (t)(1− p(G(s), t)
︸ ︷︷ ︸

xover w/ parent /∈ G(s)

+ L(s)
N(s)(p(G(s), t)− p(s, t))













Pessimistic ST for 1-pt crossover using any selection

Prob, of crossing over with a parent not in G(s)

EClab - Summer Lecture Series – p.28/48

Pessimistic Schema Theory

Poli-Langdon Theorem (pess, 1-pt x-over)

E[m(s, t +1)]≥ n · p(s, t)
︸ ︷︷ ︸

selection

(1− pm)O(s)

︸ ︷︷ ︸

mutation





1− pc









pdi f f (t)(1− p(G(s), t))
︸ ︷︷ ︸

xover w/ parent /∈ G(s)

+
L(s)
N(s)

(p(G(s), t)− p(s, t))
︸ ︷︷ ︸

xover w/ parent ∈ G(s)















Pessimistic ST for 1-pt crossover using any selection

Prob, of crossing over with a parent not in G(s)

Prob, of crossing over with a parent in G(s)

EClab - Summer Lecture Series – p.28/48

Outline of Discussion

Part I: Overview of Schema Theory
√

Part II: Pessimistic Schema Theory
√

Part III: Exact Schema Theory ←
Part IV: Conclusions

EClab - Summer Lecture Series – p.29/48

Exact Schema Theory

Exact Schema Theory

Two added elements:
Tight bounds on E[m(s, t +1)]
by forming an equality, rather
than an inequality

Now able to estimate
variance, and thus determine
the certainty of the estimate

Account for creation &
survival of schema

Assume parents are
selected independently

”Exact” in what sense?
Because it is possible to predict with a known certainty
whether m(s, t + 1) will be above a certain threshold, the
expectation operator can be removed from the theorem.

EClab - Summer Lecture Series – p.30/48

Exact Schema Theory

Exact Schema Theory

Two added elements:
Tight bounds on E[m(s, t +1)]
by forming an equality, rather
than an inequality

Now able to estimate
variance, and thus determine
the certainty of the estimate

Account for creation &
survival of schema

Assume parents are
selected independently

”Exact” in what sense?
Because it is possible to predict with a known certainty
whether m(s, t + 1) will be above a certain threshold, the
expectation operator can be removed from the theorem.

EClab - Summer Lecture Series – p.30/48

Exact Schema Theory

Exact Schema Theory

Two added elements:
Tight bounds on E[m(s, t +1)]
by forming an equality, rather
than an inequality

Now able to estimate
variance, and thus determine
the certainty of the estimate

Account for creation &
survival of schema

Assume parents are
selected independently

”Exact” in what sense?
Because it is possible to predict with a known certainty
whether m(s, t + 1) will be above a certain threshold, the
expectation operator can be removed from the theorem.

EClab - Summer Lecture Series – p.30/48

Exact Schema Theory

Transmission Probability

Want to know α(s, t):
The probability that at generation t, individuals
produced via genetic operators (including selection &
cloning) will be in schema s.
α(s, t) = Pr[s survives]+Pr[s constructed]

α(s, t) can be quite difficult to elcit

But assuming we knew it, if parents are
selected independently...

Then m(s, t) is binomially distributed!
∴ Pr[m(s, t +1)] =

(n
k

)
α(s, t)k (1−α(s, t))n−k

EClab - Summer Lecture Series – p.31/48

Exact Schema Theory

Transmission Probability

Want to know α(s, t):
The probability that at generation t, individuals
produced via genetic operators (including selection &
cloning) will be in schema s.
α(s, t) = Pr[s survives]+Pr[s constructed]

α(s, t) can be quite difficult to elcit
But assuming we knew it, if parents are
selected independently...

Then m(s, t) is binomially distributed!
∴ Pr[m(s, t +1)] =

(n
k

)
α(s, t)k (1−α(s, t))n−k

EClab - Summer Lecture Series – p.31/48

Exact Schema Theory

Transmission Probability

Want to know α(s, t):
The probability that at generation t, individuals
produced via genetic operators (including selection &
cloning) will be in schema s.
α(s, t) = Pr[s survives]+Pr[s constructed]

α(s, t) can be quite difficult to elcit
But assuming we knew it, if parents are
selected independently...

Then m(s, t) is binomially distributed!
∴ Pr[m(s, t +1)] =

(n
k

)
α(s, t)k (1−α(s, t))n−k

EClab - Summer Lecture Series – p.31/48

Exact Schema Theory

Distribution of m(s, t +1)

Now we can compute expectation and
variance exactly:

E[m(s, t +1)] = n ·α(s, t)
Var[m(s, t +1)] = n ·α(s, t) (1−α(s, t))

Now we can compute a probabilistic ST:
Using Chebyshev’s inequality & some algebra

Pr
[

m(s, t +1) > nα(s, t)− k
√

nα(s, t)(1−α(s, t))
]

≥ 1− 1
k2

for any given constant k

Now have a relationship between the bounding
condition and accuracy of the prediction

EClab - Summer Lecture Series – p.32/48

Exact Schema Theory

Stephens & Waelbroeck’s ST

Exact ST for GAs with fixed-length binary
representations
One-point crossover (no mutation)

α(s, t) = (1− pc)p(s, t)+ pc
l−1

∑l−1
i=1 p(L(s, i), t) p(R(s, i), t)

where:

L(s, i) replaces right (i+1) . . . l positions with ”*”

R(s, i) replaces left 1 . . . i positions with ”*”

EClab - Summer Lecture Series – p.33/48

Exact Schema Theory

Fixed Size/Shape GP ST

All programs have same size and shape
One-point GP crossover

α(s, t) = (1− pc)p(s, t)+ pc
N(s)

∑N(s)−1
i=1 p(l(s, i), t) p(u(s, i), t)

where:

N(s) is number of nodes in schema s

l(s, i) repl all nodes above x-over pt i with ”=” nodes

u(s, i) repl all nodes below x-over pt i with ”=” nodes

EClab - Summer Lecture Series – p.34/48

Exact Schema Theory

Hyperschemata

Set of functions is denoted, F
Set of terminals is denoted, T
The ”=” symbol is ”don’t care” for a
single function or terminal
The ”#” symbol is ”don’t care” for any
valid subtree
Schema s is a rooted tree composed of:

Internal nodes from F ∪{=}
Leaf nodes from T ∪{=,#}

EClab - Summer Lecture Series – p.35/48

Exact Schema Theory

Hyperschema Example

For example: F ∈ {+,−,∗,/},T ∈ {1, . . . ,9,x,y,z}

(+ (* 2 (+ x y)) (/ y z))

∈ (= (= 2 #) (/ = z))

+

*

2 +

x y

/

y z
∈

=

=

2 ?

...
...

/

= z

EClab - Summer Lecture Series – p.36/48

Exact Schema Theory

Hyperschema Example

For example: F ∈ {+,−,∗,/},T ∈ {1, . . . ,9,x,y,z}

(+ (* 2 (+ x y)) (/ y z))

∈ (= (= 2 #) (/ = z))

+

*

2 +

x y

/

y z
∈

=

=

2 ?

...
...

/

= z

EClab - Summer Lecture Series – p.36/48

Exact Schema Theory

Hyperschemata Notation/Measures

Let’s now denote a member of Pt as vi

No. nodes in tree fragment rep. common
region b/w programs v1 and v2 is NC(v1,v2)
Set of indices of crossover points in common
region is C(v1,v2)

Durak delta function, δ(x) = 1 if x is true,
and 0 otherwise
L(s, i) is hyperschema obtained by replacing
all nodes on path between x-over pt. i and
root node with ”=” nodes and all subtrees
connected to those nodes with ”#”
U(s, i) is hyperschema obtained by replacing
all nodes below x-over pt. i with ”#” node

EClab - Summer Lecture Series – p.37/48

Exact Schema Theory

Microscopic Exact GP ST

Valid for populations of programs of any
size and shape
Generalization of Rosca’s & P/L schemata
(hence ”hyper”)
One-point crossover, no mutation
”Microscopic” since it must consider in
detail each member of the population

α(s, t) = (1− pc) p(s, t)+

pc
∑

v1

∑

v2

p(v1,t)p(v2,t)
NC(v1,v2)

∑

i∈C(v1,v2)
δ(v1 ∈ L(s, i))δ(v2 ∈U(s, i))

Where first two sums are over all individuals in the popu-

lation.
EClab - Summer Lecture Series – p.38/48

Exact Schema Theory

Advantages of Macroscopic ST

Way of ”course-graining” the right-hand side
Do not have to consider each individual in population
Mainly we are interested in average properties

Becomes a proper generalization of all ST
so-far described

Holland’s ST
Stephens & Waelbroeck’s ST
Poli-Langdon’s fixed size & shape ST
Poli-Langdon’s microscopic exact ST

EClab - Summer Lecture Series – p.39/48

Exact Schema Theory

Macroscopic Exact GP ST

Gi represents all possible schemata of order 0
of the ith fixed size & shape.
Enumerating all fixed size & shape order 0
schemata, G1,G2, . . ., we cover the entire
search space
One-point crossover, no mutation

α(s, t) = (1− pc) p(s, t)+

pc
∑

j

∑

k
1

NC(G j ,Gk)

∑

i∈C(G j ,Gk)
p
(
L(s, i)∩G j, t

)
p(R(s, i)∩Gk, t)

EClab - Summer Lecture Series – p.40/48

Exact Schema Theory

Other Macroscopic GP ST

Homologous crossover
Node-invariant subtree-crossing crossover
∴ Standard crossover
Linear, length-only ST:

Homologous crossover
Headless chicken crossover
Subtree mutation crossover

EClab - Summer Lecture Series – p.41/48

Exact Schema Theory

GP and the Building Block Hypothesis

O’Reilly (1995) suggests crossover too
destructive, so no BBH for GP
Langdon & Poli (for 1-pt crossover) suggest
otherwise:

L(s.i)∩G j and U(s.i)∩Gk behave like GA BBs
GP really builds solutions via construction of lower
order BBs
But GP BBs do not have to be above average fitness,
short, or even of particularly low order

EClab - Summer Lecture Series – p.42/48

Outline of Discussion

Part I: Overview of Schema Theory
√

Part II: Pessimistic Schema Theory
√

Part III: Exact Schema Theory
√

Part IV: Conclusions ←

EClab - Summer Lecture Series – p.43/48

Conclusions

Traditional versus Exact Schema Theory

Traditional Exact

GA/Binary representation Main focus has been in GP

Fixed length rep. Variable length rep.

”Pessimistic” inequality
provides lower bound on
expectation

Uses equality, so correctly
predicts the expectation

Can compute probability of
expectation

EClab - Summer Lecture Series – p.44/48

Conclusions

Riccardo Poli’s View of GP ST

Compatibility with existing theory
GP Schema Theory is a superset of GA Schema Theory

GAs are a subset of GP
Overlaps with dynamical systems & Markov modeling

Framework for est. specialized theorems
There is no ”correct” schema theorem, it depends on
the context of the question

Must find the right level of granularity

Different operators lead to different ST

Valid and useful tool for researchers
The meaning of GP building blocks is clearer
Exact GP ST can help (and has helped) guide designers
to create better representations, operators, and
algorithms
Can tell (and has told) us useful things about how GP
works...

EClab - Summer Lecture Series – p.45/48

Conclusions

Riccardo Poli’s View of GP ST

Compatibility with existing theory
GP Schema Theory is a superset of GA Schema Theory

GAs are a subset of GP
Overlaps with dynamical systems & Markov modeling

Framework for est. specialized theorems
There is no ”correct” schema theorem, it depends on
the context of the question

Must find the right level of granularity

Different operators lead to different ST

Valid and useful tool for researchers
The meaning of GP building blocks is clearer
Exact GP ST can help (and has helped) guide designers
to create better representations, operators, and
algorithms
Can tell (and has told) us useful things about how GP
works...

EClab - Summer Lecture Series – p.45/48

Conclusions

Riccardo Poli’s View of GP ST

Compatibility with existing theory
GP Schema Theory is a superset of GA Schema Theory

GAs are a subset of GP
Overlaps with dynamical systems & Markov modeling

Framework for est. specialized theorems
There is no ”correct” schema theorem, it depends on
the context of the question

Must find the right level of granularity

Different operators lead to different ST
Valid and useful tool for researchers

The meaning of GP building blocks is clearer
Exact GP ST can help (and has helped) guide designers
to create better representations, operators, and
algorithms
Can tell (and has told) us useful things about how GP
works...

EClab - Summer Lecture Series – p.45/48

Conclusions

What has ST told us?

Prediction:
Local estimations for schema propagation
Local estimations of average fitness improvement
Rank operators for given fitness function (derive
Price’s theorem)

Explanation:
Understand why certain things happen (formally):

When algorithms behave differently for different initial populations
Rate changes of different selection operators
Why (and how) GP adds/removes individuals from a schema

Understand operator bias: ?
When mutation and recombination have creation/survival advantages
over one another in GAs. (Spears, 2000)
Linear, 1-pt crossover is unbiased w.r.t. program length. (McPhee, 2001)
Standard crossover is biased toward longer programs, but in which
primitives are uniformly distributed in quantity and position
(generalized Geiringer’s theorm). (Poli, 2002)
Combining operators may arrest growth from standard crossover
(model validation studies). McPhee, 2002)

EClab - Summer Lecture Series – p.46/48

Conclusions

What ST hasn’t told us?

How to build the perfect EA to solve problems of
some particular problem class
What kind of long term behaviors can we expect from
our EAs
Whether or not EAs (nearly) converge to (near)
optimal solutions and under what contexts
How long we can expect to wait for an EA to
converge
What kind of car Sean should buy, without verbal
feedback

EClab - Summer Lecture Series – p.47/48

Conclusions

What ST hasn’t told us?

How to build the perfect EA to solve problems of
some particular problem class
(Omnipotence)
What kind of long term behaviors can we expect from
our EAs
Whether or not EAs (nearly) converge to (near)
optimal solutions and under what contexts
How long we can expect to wait for an EA to
converge
What kind of car Sean should buy, without verbal
feedback

EClab - Summer Lecture Series – p.47/48

Conclusions

What ST hasn’t told us?

How to build the perfect EA to solve problems of
some particular problem class
(Omnipotence)
What kind of long term behaviors can we expect from
our EAs
(Dynamical systems, Global analysis)
Whether or not EAs (nearly) converge to (near)
optimal solutions and under what contexts
How long we can expect to wait for an EA to
converge
What kind of car Sean should buy, without verbal
feedback

EClab - Summer Lecture Series – p.47/48

Conclusions

What ST hasn’t told us?

How to build the perfect EA to solve problems of
some particular problem class
(Omnipotence)
What kind of long term behaviors can we expect from
our EAs
(Dynamical systems, Global analysis)
Whether or not EAs (nearly) converge to (near)
optimal solutions and under what contexts
(Dynamical systems?)
How long we can expect to wait for an EA to
converge
What kind of car Sean should buy, without verbal
feedback

EClab - Summer Lecture Series – p.47/48

Conclusions

What ST hasn’t told us?

How to build the perfect EA to solve problems of
some particular problem class
(Omnipotence)
What kind of long term behaviors can we expect from
our EAs
(Dynamical systems, Global analysis)
Whether or not EAs (nearly) converge to (near)
optimal solutions and under what contexts
(Dynamical systems?)
How long we can expect to wait for an EA to converge
(Global analysis)
What kind of car Sean should buy, without verbal
feedback

EClab - Summer Lecture Series – p.47/48

Conclusions

What ST hasn’t told us?

How to build the perfect EA to solve problems of
some particular problem class
(Omnipotence)
What kind of long term behaviors can we expect from
our EAs
(Dynamical systems, Global analysis)
Whether or not EAs (nearly) converge to (near)
optimal solutions and under what contexts
(Dynamical systems?)
How long we can expect to wait for an EA to converge
(Global analysis)
What kind of car Sean should buy, without verbal
feedback
(Omnipotence, Telepathy)

EClab - Summer Lecture Series – p.47/48

Conclusions

References

Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning.
1989

Langdon, W. and Poli, R. Foundations of Genetic Programming. 2002

Langdon, W. and Poli, R. Tutorial on Foundations of Genetic Programming. In
GECCO 2002 Tutorials. 2002

Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 3rd
Revised and Extended Edition. 1996

McPhee, N. et al. A schema theory analysis of the evolution of size in genetic
programming with linear representations. In EUROGP 2001 Proceedings. 2001

Poli, R. et al. On the Search Biases of Homologous Crossover in Linear Genetic
Programming and Variable-length Genetic Algorithms. In GECCO 2002
Proceedings. 2002

Poli, R. and McPhee, N. Markov chain models for GP and variable-length GAs
with homologous crossover. In GECCO 2001 Proceedings. 2001

Spears, W. Evolutionary Algorithms: The Role of Mutation and Recombination.
2000

Stephens, C. and Waelbroeck. Schemata Evolution and Building Blocks. In
Evolutionary Computation 7(2). 1999

EClab - Summer Lecture Series – p.48/48

	Outline of Discussion
	What is a Theory?
	What are Schemata?
	What is Schema Theory?
	What are Schema Theorems?
	The Traditional Schema Theorem
	Advantages of Schema Theory
	Criticism of the Schema Theory
	Outline of Discussion
	Traditional Schema Theory
	Notation
	Notation (continued)
	Measures of Schema
	Surviving Mutation
	Surviving Crossover
	The Traditional Schema Theorem
	What does this tell us?
	Genetic Programming Schemata
	GP Schemata (continued)
	Rosca's Rooted Tree Schemata
	Rosca's Schemata Notation/Measures
	Rosca's Schema Theorem
	Poli-Langdon Schemata
	Poli-Langdon ST Notation/Measures
	Poli-Langdon ST Notation/Measures
	GP One-Point Crossover
	Poli-Langdon Theorem {small (pess, 1-pt x-over)}
	Outline of Discussion
	Exact Schema Theory
	Transmission Probability
	Distribution of $m(s,t+1)$
	Stephens & Waelbroeck's ST
	Fixed Size/Shape GP ST
	Hyperschemata
	Hyperschema Example
	Hyperschemata Notation/Measures
	Microscopic Exact GP ST
	Advantages of Macroscopic ST
	Macroscopic Exact GP ST
	Other Macroscopic GP ST
	GP and the Building Block Hypothesis
	Outline of Discussion
	Traditional versus Exact Schema Theory
	Riccardo Poli's View of GP ST
	What emph {has} ST told us?
	What ST emph {hasn't} told us?
	References

