No Free Lunch *Summer Lecture Series 2002*

۲

Thomas Jansen

tjansen.gmu.edu or Thomas.Jansen@cs.uni-dortmund.de

Overview

- "The Original" NFL Theorem
- An improved NFL Theorem
- NFL Assumptions
 - Objective Functions
 - Performance Measures
 - Optimization Scenarios
- NFL Implications

General Randomized Search Heuristics

Search in some search space X for points rated by a function f.

Black Box Scenario:

- \checkmark no direct access to f
- no a priori knowledge
- only way to learn about f is sampling

Assumption: The heuristic is complete.

What is an arbitrary function?

$$f \colon X \to Y$$

•

What is an arbitrary function?

 $f \colon X \to Y$

X discrete

What is an arbitrary function?

 $f \colon X \to Y$

- X discrete
- Y discrete

What is an arbitrary function?

 $f \colon X \to Y$

- X discrete
- Y discrete
- X finite

No Free Lunch

07/02/02

4/39

What is an arbitrary function?

 $f \colon X \to Y$

- X discrete
- Y discrete
- X finite
- Y finite

What is an arbitrary function?

 $f \colon X \to Y$

- X discrete
- Y discrete
- X finite
- Y finite
- no function "more likely" than any other

Performance Measures

- function evaluations matter
- success measured in function values found

Performance Measures

- function evaluations matter
- performance measured in function val. found
- re-evaluations easy to avoid

Performance Measures

- function evaluations matter
- performance measured in function val. found
- re-evaluations easy to avoid

Consider algorithm A on function f and ignore re-evaluations.

۲

Consider algorithm's trace $T(A, f, t) = \langle (x_1, f(x_1)), (x_2, (f(x_2)), \dots, (x_t, f(x_t)) \rangle$.

Consider algorithm's trace $T(A, f, t) = \langle (x_1, f(x_1)), (x_2, (f(x_2)), \dots, (x_t, f(x_t))) \rangle$. Measure performance based on performance vector $V(T(A, f, t)) = \langle f(x_1), f(x_2), \dots, f(x_t) \rangle$.

Consider algorithm's trace $T(A, f, t) = \langle (x_1, f(x_1)), (x_2, (f(x_2)), \dots, (x_t, f(x_t))) \rangle$. Measure performance based on performance vector $V(T(A, f, t)) = \langle f(x_1), f(x_2), \dots, f(x_t) \rangle$.

Performance measure $M: \{V(T(A, f, t)) \mid A, f, t\} \rightarrow \mathbb{R}$

Consider algorithm's trace $T(A, f, t) = \langle (x_1, f(x_1)), (x_2, (f(x_2)), \dots, (x_t, f(x_t))) \rangle$. Measure performance based on performance vector $V(T(A, f, t)) = \langle f(x_1), f(x_2), \dots, f(x_t) \rangle$.

Performance measure $M: \{V(T(A, f, t)) \mid A, f, t\} \rightarrow \mathbb{R}$

Global performance measure

$$\left(\sum_{f\in Y^X} M\left(V(T(A, f, |X|))\right)\right) / |Y|^{|X|}$$

The No Free Lunch Theorem

No Free Lunch Theorem:

For all finite sets X, Y

۲

and for all global performance measures,

all search algorithms perform equal.

(I)

First step: Consider only deterministic search algorithms.

۲

First step: Consider only deterministic search algorithms.

How can we describe a deterministic search algorithm?

۲

First step: Consider only deterministic search algorithms.

How can we describe a deterministic search algorithm? a_1

(I)

۲

First step: Consider only deterministic search algorithms.

How can we describe a deterministic search algorithm? $f(a_1) = b_1$ $f(a_1) = b_2$ $f(a_1) = b_3$ $f(a_1) = b_4$

(I)

First step: Consider only deterministic search algorithms.

How can we describe a deterministic search algorithm? $f(a_1) = b_1$ $a_1^1 = b_3$ $f(a_1) = b_3$ $f(a_1) = b_4$ a_2^1 a_2^2 a_2^3 a_2^3 a_2^4

 (\mathbf{I})

First step: Consider only deterministic search algorithms.

How can we describe a deterministic search algorithm? $f(a_1) = b_1$ a_1^1 $f(a_1) = b_2$ a_2^2 a_2^3 a_2^3 a_2^3 a_2^4 a_2^4

(I)

Consider a fixed search algorithm *A*.

Claim:

 $\forall f,g\colon \ V(T(A,f,|X|))=V(T(A,g,|X|))\Rightarrow f=g$

Consider a fixed search algorithm *A*.

Claim:

۲

$$\forall f,g \colon V(T(A,f,|X|)) = V(T(A,g,|X|)) \Rightarrow f = g$$

Proof:

- $f: (a_1, f(a_1))$
- $g: (a_1, g(a_1))$

Consider a fixed search algorithm *A*.

Claim:

- $\forall f, g: V(T(A, f, |X|)) = V(T(A, g, |X|)) \Rightarrow f = g$ **Proof:**
 - $f: (a_1, f(a_1)), (a_2, f(a_2))$
 - $g: (a_1, g(a_1) = f(a_1)), (a_2, g(a_2))$

(II)

Consider a fixed search algorithm A.

Claim:

- $\forall f, g: V(T(A, f, |X|)) = V(T(A, g, |X|)) \Rightarrow f = g$ **Proof:**
 - $f: (a_1, f(a_1)), (a_2, f(a_2)), (a_3, f(a_3)), \dots$
 - $g: (a_1, f(a_1)), (a_2, g(a_2) = f(a_2)), (a_3, g(a_3)), \dots$

(III)

Consider a fixed search algorithm *A*.

Claim:

•

$$\left| \left\{ V(T(A, f, |X|)) \mid f \in Y^X \right\} \right| = |Y|^{|X|}$$

(III)

Consider a fixed search algorithm *A*.

Claim:

•

$$\left| \left\{ V(T(A, f, |X|)) \mid f \in Y^X \right\} \right| = |Y|^{|X|}$$

Proof:

$$\left|\left\{f \mid f \in Y^X\right\}\right| = |Y|^{|X|}$$

(III)

Consider a fixed search algorithm *A*.

Claim:

•

$$\left| \left\{ V(T(A, f, |X|)) \mid f \in Y^X \right\} \right| = |Y|^{|X|}$$

Proof:

$$\begin{aligned} \left| \left\{ f \mid f \in Y^X \right\} \right| &= |Y|^{|X|} \\ \forall f, g \in Y^X : \\ f \neq g \Rightarrow V(T(A, f, |X|)) \neq V(T(A, g, |X|)) \end{aligned}$$

Conclusion:

۲

$$\begin{aligned} \forall A,B : & \{V(T(A,f,|X|)) \mid f \in Y^X\} \\ & = \{V(T(B,f,|X|)) \mid f \in Y^X\} \end{aligned}$$

Conclusion:

For all finite sets X, Y, and for all global performance measures, all deterministic search algorithms perform equal.

No Free Lunch

07/02/02

11/39

۲

(V)

X, Y finite $\Rightarrow Y^X$ finite \Rightarrow number of essentially different deterministic search algorithms finite

۲

(V)

X, Y finite $\Rightarrow Y^X$ finite \Rightarrow number of essentially different deterministic search algorithms finite

 \Rightarrow "randomized search algo." = "prob. dist. over essentially different deterministic search algo."

(V)

X, Y finite $\Rightarrow Y^X$ finite \Rightarrow number of essentially different deterministic search algorithms finite

 \Rightarrow "randomized search algo." = "prob. dist. over essentially different deterministic search algo."

 \Rightarrow "performance of randomized search algorithm" = "weighted sum of the performance of some deterministic search algorithms"

(V)

No Free Lunch

12/39

X, Y finite $\Rightarrow Y^X$ finite \Rightarrow number of essentially different deterministic search algorithms finite

 \Rightarrow "randomized search algo." = "prob. dist. over essentially different deterministic search algo."

 \Rightarrow "performance of randomized search algorithm" = "weighted sum of the performance of some deterministic search algorithms"

 \Rightarrow For all finite sets X, Y, and for all global performance measures, all search algorithms perform equal.

Overview

۲

- "The Original" NFL Theorem
- An improved NFL Theorem
- NFL Assumptions
 - Objective Functions
 - Performance Measures
 - Optimization Scenarios

No Free Lunch

07/02/02

13/39

NFL Implications

۲

(I)

NFL theorems do not only hold for global measures considering all possible functions.

(I)

NFL theorems do not only hold for global measures considering all possible functions. Permutations of functions:

Definition: $\sigma \in \text{Perm}(X)$: $\sigma f(x) := f(\sigma^{-1}(x))$

Definition: $\mathcal{F} \subseteq Y^X$ closed under permutations $\Leftrightarrow \forall f \in \mathcal{F} \colon \forall \sigma \in \operatorname{Perm}(X) \colon \sigma f \in \mathcal{F}$

Definition: performance measure global on ${\mathcal F}$

$$\Leftrightarrow \left(\sum_{f \in \mathcal{F}} M(V(A, f, |X|))\right) / |\mathcal{F}|$$

۲

(II)

Improved NFL Theorem:

For all finite sets X, Y, for all sets $\mathcal{F} \subseteq Y^X$ closed under permutations, and for all performance measures global on \mathcal{F} , all search algorithms perform equal.

(II)

Improved NFL Theorem:

For all finite sets X, Y, for all sets $\mathcal{F} \subseteq Y^X$ closed under permutations, and for all performance measures global on \mathcal{F} , all search algorithms perform equal.

Proof:

۲

$$\forall f \in Y^X \colon \forall A, B \colon \exists \sigma \in \mathsf{Perm}(X) \colon V(A, f, |X|) = V(B, \sigma f, |X|)$$

(III)

NFL theorems do not hold for performance measures global on arbitrary \mathcal{F} .

(III)

NFL theorems do not hold for performance measures global on arbitrary \mathcal{F} .

Improved NFL Theorem:

For all finite sets X, Y, for all sets $\mathcal{F} \subseteq Y^X$, all search algorithms perform equal for all performance measures global on \mathcal{F} , if and only if \mathcal{F} is closed under permutations.

۲

(IV)

Proof: by contradiction X, Y, algorithm A fixed $\mathcal{F} \subseteq Y^X$ not closed under permutations

$$f \in \mathcal{F}, \sigma \in \operatorname{Perm}(X), \sigma f \notin \mathcal{F}$$

Define $M: M(V) = \begin{cases} 1 & \text{if } V = V(T(A, f, |X|)) \\ 0 & \text{otherwise} \end{cases}$

۲

(V)

No Free Lunch

07/02/02

18/39

Obvious:
$$\sum_{g \in \mathcal{F}} M(V(T(A, g, |X|))) = 1$$

We assume NFL holds for \mathcal{F} .
Thus for all search algorithms B :
 $\sum_{g \in \mathcal{F}} M(V(T(B, g, |X|))) = 1$

There is an algorithm C such that $V(T(C, \sigma f, |X|)) = V(T(A, f, |X|)).$

 $\sigma f \notin \mathcal{F} \Rightarrow \sum_{g \in \mathcal{F}} M(V(T(C,g,|X|))) = 0$ contradiction

Overview

۲

- "The Original" NFL Theorem
- An improved NFL Theorem
- NFL Assumptions
 - Objective Functions
 - Performance Measures
 - Optimization Scenarios
- NFL Implications

Original NFL: all functions

Example: Assume $X = \{0, 1\}^{40}, Y = \{0, 1\}^8$. Assume objective function f is coded in at most 1 giga byte of RAM.

Only $100 \cdot \frac{1024^8 \cdot 8}{(2^8)^{2^{40}}}\% < 10^{-8,796,093,022,120}\%$ of all functions possible.

Most functions can neither be represented nor evaluated.

• • •

No Free Lunch

07/02/02

Improved NFL: $\mathcal{F} \subseteq Y^X$ closed under permutations

Claim:

fraction of non-empty \mathcal{F} closed under permutations:

$$\frac{2^{\binom{|X|+|Y|-1}{|X|}} - 1}{2^{|Y|^{|X|}} - 1}$$

Sets with NFL results exponentially small fraction.

No Free Lunch

۲

The number of sets closed under permutations:

Definition: For $f: X \to Y$: histogram $h_f: Y \to \mathbb{N}_0$ with $h_f(y) = |\{x \in X \mid f(x) = y\}|$

Observation: " $f \sim g \Leftrightarrow h_f = h_g$ " defines equivalence relation

Definition: basis class B_f : equivalence class of f

• • • •

No Free Lunch

۲

The number of sets closed under permutations:

Claim: There are $\binom{|X|+|Y|-1}{|X|}$ pairwise disjoint basis classes.

Proof: basis class " $\stackrel{\wedge}{=}$ " histogram $\begin{vmatrix} 1 & 2 & 3 \\ n_1 & n_2 & n_3 \\ \end{vmatrix} \dots \begin{vmatrix} |Y| - 1 & |Y| \\ n_{|Y|-1} & n_{|Y|} \end{vmatrix}$ with $\sum_{i=1}^{|Y|} n_i = |X|$

Think of each image is a ball: Pick pos. of |X| balls from |X| + |Y| - 1 pos.

07/02/0

The number of sets closed under permutations:

• • •

No Free Lunch

07/02/02

24/39

Claim: $f \sim g \Leftrightarrow \exists \sigma \in \mathsf{Perm}(X) \colon \sigma f = g$

Proof:

۲

- " \Rightarrow ": Define σ .
- "⇐": histogram permutation-invariant

The number of sets closed under permutations:

Claim: $\forall \mathcal{F} \subseteq Y^X$ closed under permutation: \mathcal{F} is union of basis classes

Proof: For $f \in \mathcal{F}$ consider $F_f := B_f \cap \mathcal{F}$.

Observations:

$$\bigcup_{f \in \mathcal{F}} F_f = \mathcal{F} \qquad F_f \subseteq B_f \qquad B_f \subseteq F_f$$

No Free Lunch

The number of sets closed under permutations:

Claim:

fraction of non-empty \mathcal{F} closed under permutations:

$$\frac{2^{\binom{|X|+|Y|-1}{|X|}} - 1}{2^{|Y|^{|X|}} - 1}$$

Proof: number of non-empty unions of basis classes: $2^{\text{number of basis classes}} - 1$ number of all non-empty sets: $2^{\text{number of functions}} - 1$

No Free Lunch

Definition: neighborhood $N: X \times X \rightarrow \{$ true, false $\}$

Definition: neighborhood N non-trivial $\Leftrightarrow \exists x_1, x_2, x_3, x_4 \in X:$ $(x_1 \neq x_2 \land N(x_1, x_2) = \text{true}) \land$ $(x_3 \neq x_4 \land N(x_3, x_4) = \text{false})$

Observation:

Any non-trivial neighborhood is not invariant under permutations.

•

Let $\mathcal{F} \subseteq Y^X$ be the set of "possible functions".

Let $\mathcal{F} \subseteq Y^X$ be the set of "possible functions".

Conclusion:

۲

For \mathcal{F} with minimal "smoothness" NFL results do not hold.

- Let $\mathcal{F} \subseteq Y^X$ be the set of "possible functions".
- Conclusion:
- For \mathcal{F} with minimal "smoothness" NFL results do not hold.
- **Conclusion:**
- For \mathcal{F} with a bounded number of local optima NFL results do not hold.

NFL Assumptions — Performance Measures

۲

Randomized search heuristics do re-evaluate.

Re-evaluations do influence the computation time.

NFL results have limited implications for consideration of computation time.

NFL Assumptions — Optimization Scenarios

Black Box Optimization:

Randomized search heuristic has to work for all $f \in \mathcal{F}$, where $\mathcal{F} \subseteq Y^X$ is complexity restricted.

Possible complexity restrictions:

- evaluation time restricted
- representation size restricted
- Sologoroff complexity restricted

The ANFL Theorem

The Almost No Free Lunch Theorem:

 $X = \{0, 1\}^n$, $Y = \{0, 1, \dots, N-1\}$, $f \colon X \to Y$, A a randomized search algorithm

 $|\{f^*: \{0,1\}^n \rightarrow \{0,1,\ldots,N\} | f^* \text{ agrees with } f$ on $\geq 2^n - 2^{n/3}$ inputs and A finds the max. of f^* within $2^{n/3}$ steps with prob. $\leq 2^{-n/3} \}| \geq N^{2^{n/3}-1}$. For exp. many functions $f^*: C(f^*) = C(f) + O(n)$ where C is evaluation time, circuit representation size, or Kolmogoroff complexity

• •

A: randomized search algorithm

 $f: \{0,1\}^n \rightarrow \{0,1,\ldots,N-1\}$: function, such that A is efficient on f

Consider first $2^{n/3}$ steps of A on f.

 $q(x) = \operatorname{Prob}(A \text{ visits } x \text{ in the first } 2^{n/3} \text{ steps})$

$$\sum_{x \in \{0,1\}^n} q(x)$$

• •

A: randomized search algorithm

 $f: \{0,1\}^n \rightarrow \{0,1,\ldots,N-1\}$: function, such that A is efficient on f

Consider first $2^{n/3}$ steps of A on f.

 $q(x) = \operatorname{Prob}(A \text{ visits } x \text{ in the first } 2^{n/3} \text{ steps})$

$$\sum_{x \in \{0,1\}^n} q(x) \le 2^{n/3}$$

۲

• •

 $S_b := \{ x \in \{0, 1\}^n \mid \forall i \in \{1, 2, \dots, 2n/3\} \colon x_i = b_i \}$

Observations:

۲

•
$$\forall b \in \{0, 1\}^{2n/3} : |S_b| = 2^{n/3}$$

• $|\{S_b \mid b \in \{0, 1\}^{2n/3}\}| = 2^{2n/3}$
• $\forall b \neq b' \in \{0, 1\}^{2n/3} : S_b \cap S_{b'} = \emptyset$

(II)

(III)

Definition:

•

$q^*(b) := \operatorname{Prob}(A \text{ visits } S_b \text{ in the first } 2^{n/3} \text{ steps})$

Definition:

•

 $q^*(b) := \operatorname{Prob}(A \text{ visits } S_b \text{ in the first } 2^{n/3} \text{ steps})$

Obvious: $q^*(b) \leq \sum_{x \in S_b} q(x)$

(III)

Definition:

 $q^*(b) := \operatorname{Prob}(A \text{ visits } S_b \text{ in the first } 2^{n/3} \text{ steps})$ Obvious: $q^*(b) \leq \sum_{x \in S_b} q(x)$

Conclusion: $\exists b^* : q^*(b^*) \le \frac{2^{n/3}}{2^{2n/3}} = 2^{-n/3}$

•

Definition: $f^*: \{0, 1\}^n \to \mathbb{R}$ with $\forall x \notin S_{b^*}: f^*(x) = f(x)$ $\exists x^* \in S_{b^*}: f^*(x^*) = N$

•

(III)

Definition: $f^*: \{0, 1\}^n \to \mathbb{R}$ with $\forall x \notin S_{b^*}: f^*(x) = f(x)$ $\exists x^* \in S_{b^*}: f^*(x^*) = N$

Observations:

۲

- There are at least $N^{2^{n/3}} 1$ such f^* .
- Prob(A optimizes f^* in $\leq 2^{n/3}$ steps) $\leq 2^{-n/3}$

•

No Free Lunch

07/02/02

(III)

Problem: Almost all such f^* are hard to represent and evaluate.

Solution: $f_{x^*,c}^*(x) = \begin{cases} f(x) & x \notin S_{b^*} \\ N & x = x^* \\ c & \text{otherwise} \end{cases}$

۲

There are $N \cdot 2^{n/3}$ such functions $f_{x^*,c}^*$.

• •

No Free Lunch

07/02/02

Overview

۲

- "The Original" NFL Theorem
- An improved NFL Theorem
- NFL Assumptions
 - Objective Functions
 - Performance Measures
 - Optimization Scenarios

• •

No Free Lunch

07/02/02

37/39

NFL Implications

NFL Implications

•

The (improved) NFL is a valid theorem.

NFL Implications

۲

- The (improved) NFL is a valid theorem.
- Second the second s

NFL Implications

۲

- The (improved) NFL is a valid theorem.
- Second the second s
- If someone claims "In my application domain NFL results do not hold" he or she is prob. right.
NFL Implications

- The (improved) NFL is a valid theorem.
- Second the second s
- If someone claims "In my application domain NFL results do not hold" he or she is prob. right.
- When measuring computation time, NFL is not helpful.

NFL Implications

- The (improved) NFL is a valid theorem.
- Second the second s
- If someone claims "In my application domain NFL results do not hold" he or she is prob. right.
- When measuring computation time, NFL is not helpful.
- NFL has little impact on research.

NFL Implications

- The (improved) NFL is a valid theorem.
- Second the second s
- If someone claims "In my application domain NFL results do not hold" he or she is prob. right.
- When measuring computation time, NFL is not helpful.
- NFL has little impact on research.
- The ANFL Theorem restricts what can be achieved.

Overview

- "The Original" NFL Theorem
- An improved NFL Theorem
- NFL Assumptions
 - Objective Functions
 - Performance Measures
 - Optimization Scenarios
- NFL Implications