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General Randomized Search Heuristics

Search in some search space X for points rated
by a function f .

Black Box Scenario:

no direct access to f

no a priori knowledge

only way to learn about f is sampling

Assumption: The heuristic is complete.
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Optimizing an Arbitrary Function

What is an arbitrary function?

f : X → Y

X discrete

Y discrete

X finite

Y finite

no function “more likely” than any other
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Performance Measures

function evaluations matter

success measured in function values found

function evaluations matter

performance measured in function val. found

re-evaluations easy to avoid

Consider algorithm A on function f and

ignore re-evaluations.
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Performance Measures (continued)

Consider algorithm’s trace
T (A, f, t) =< (x1, f(x1)), (x2, (f(x2)), . . . , (xt, f(xt)) >.

Measure performance based on performance vector
V (T (A, f, t)) =< f(x1), f(x2), . . . , f(xt) >.

Performance measure
M : {V (T (A, f, t)) | A, f, t} → R

Global performance measure
(

∑

f∈Y X

M (V (T (A, f, |X|)))

)

/|Y ||X|
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The No Free Lunch Theorem

No Free Lunch Theorem:

For all finite sets X, Y

and for all global performance measures,

all search algorithms perform equal.
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Proving the NFL Theorem (I)

First step: Consider only deterministic search
algorithms.

How can we describe a deterministic search
algorithm? a1

f(a1) = b1

f(a1) = b2
f(a1) = b3 f(a1) = b4

a1
2 a2

2 a3
2 a4

2

. . . . . . . . . . . .
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Proving the NFL Theorem (II)

Consider a fixed search algorithm A.

Claim:

∀f, g : V (T (A, f, |X|)) = V (T (A, g, |X|)) ⇒ f = g
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Proving the NFL Theorem (II)

Consider a fixed search algorithm A.

Claim:

∀f, g : V (T (A, f, |X|)) = V (T (A, g, |X|)) ⇒ f = g

Proof:

f : (a1, f(a1)), (a2, f(a2)), (a3, f(a3)), . . .

g : (a1, f(a1)), (a2, g(a2) = f(a2)), (a3, g(a3)), . . .

�
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Proving the NFL Theorem (III)

Consider a fixed search algorithm A.

Claim:
∣

∣

{

V (T (A, f, |X|)) | f ∈ Y X
}
∣

∣ = |Y ||X|

Proof:
∣

∣

{

f | f ∈ Y X
}
∣

∣ = |Y ||X|

∀f, g ∈ Y X :
f 6= g ⇒ V (T (A, f, |X|)) 6= V (T (A, g, |X|))

�
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Proving the NFL Theorem (IV)

Conclusion:

∀A, B :
{

V (T (A, f, |X|)) | f ∈ Y X
}

=
{

V (T (B, f, |X|)) | f ∈ Y X
}

Conclusion:

For all finite sets X, Y ,
and for all global performance measures,

all deterministic search algorithms perform equal.
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Proving the NFL Theorem (V)

X, Y finite ⇒ Y X finite ⇒ number of essentially
different deterministic search algorithms finite

⇒ “randomized search algo.” = “prob. dist. over
essentially different deterministic search algo.”

⇒ “performance of randomized search
algorithm” = “weighted sum of the performance
of some deterministic search algorithms”

⇒ For all finite sets X, Y , and for all global
performance measures, all search algorithms
perform equal.

�
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Improved NFL (I)

NFL theorems do not only hold for global
measures considering all possible functions.

Permutations of functions:

Definition: σ ∈ Perm(X) : σf(x) := f(σ−1(x))

Definition: F ⊆ Y X closed under permutations
⇔ ∀f ∈ F : ∀σ ∈ Perm(X) : σf ∈ F

Definition: performance measure global on F

⇔

(

∑

f∈F

M(V (A, f, |X|))

)

/|F|
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Improved NFL (II)

Improved NFL Theorem:

For all finite sets X, Y ,
for all sets F ⊆ Y X closed under permutations,
and for all performance measures global on F ,
all search algorithms perform equal.

Proof:

∀f ∈ Y X : ∀A, B : ∃σ ∈ Perm(X) :
V (A, f, |X|) = V (B, σf, |X|)

�
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Improved NFL (III)

NFL theorems do not hold for performance
measures global on arbitrary F .

Improved NFL Theorem:

For all finite sets X, Y ,
for all sets F ⊆ Y X ,
all search algorithms perform equal
for all performance measures global on F ,

if and only if F is closed under permutations.
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Improved NFL (IV)

Proof: by contradiction

X, Y , algorithm A fixed
F ⊆ Y X not closed under permutations

f ∈ F , σ ∈ Perm(X), σf /∈ F

Define M : M(V ) =

{

1 if V = V (T (A, f, |X|))

0 otherwise
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Improved NFL (V)

Obvious:
∑

g∈F

M(V (T (A, g, |X|))) = 1

We assume NFL holds for F .
Thus for all search algorithms B:
∑

g∈F

M(V (T (B, g, |X|))) = 1

There is an algorithm C such that
V (T (C, σf, |X|)) = V (T (A, f, |X|)).

σf /∈ F ⇒
∑

g∈F M(V (T (C, g, |X|))) = 0

contradiction
�
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NFL Assumptions — Objective Functions

Original NFL: all functions

Example: Assume X = {0, 1}40, Y = {0, 1}8.
Assume objective function f is coded in at most
1 giga byte of RAM.

Only 100 · 10248·8

(28)
240

% < 10−8,796,093,022,120% of all

functions possible.

Most functions can neither be represented nor

evaluated.
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NFL Assumptions — Objective Functions

Improved NFL:
F ⊆ Y X closed under permutations

Claim:

fraction of non-empty F closed under permutations:

2(|X|+|Y |−1

|X| ) − 1

2|Y ||X| − 1

Sets with NFL results exponentially small fraction.
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NFL Assumptions — Objective Functions

The number of sets closed under permutations:

Definition: For f : X → Y : histogram hf : Y → N0

with hf(y) = |{x ∈ X | f(x) = y}|

Observation: “f ∼ g ⇔ hf = hg” defines
equivalence relation

Definition: basis class Bf : equivalence class of f

No Free Lunch 07/02/02 22/39



NFL Assumptions — Objective Functions

The number of sets closed under permutations:

Claim: There are
(

|X|+|Y |−1
|X|

)

pairwise disjoint
basis classes.

Proof: basis class “ ∧=” histogram
1 2 3 . . . |Y | − 1 |Y |

n1 n2 n3 . . . n|Y |−1 n|Y |

with
|Y |
∑

i=1

ni = |X|

Think of each image is a ball:
Pick pos. of |X| balls from |X| + |Y | − 1 pos.

�
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NFL Assumptions — Objective Functions

The number of sets closed under permutations:

Claim: f ∼ g ⇔ ∃σ ∈ Perm(X) : σf = g

Proof:

“⇒”: Define σ.

“⇐”: histogram permutation-invariant
�
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NFL Assumptions — Objective Functions

The number of sets closed under permutations:

Claim: ∀F ⊆ Y X closed under permutation:
F is union of basis classes

Proof:
For f ∈ F consider Ff := Bf ∩ F .

Observations:
⋃

f∈F

Ff = F Ff ⊆ Bf Bf ⊆ Ff

�
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NFL Assumptions — Objective Functions

The number of sets closed under permutations:

Claim:
fraction of non-empty F closed under permutations:

2(|X|+|Y |−1

|X| ) − 1

2|Y ||X| − 1

Proof: number of non-empty unions of basis
classes: 2number of basis classes − 1
number of all non-empty sets: 2number of functions − 1

�
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NFL Assumptions — Objective Functions

Definition: neighborhood N : X × X → {true, false}

Definition: neighborhood N non-trivial ⇔
∃x1, x2, x3, x4 ∈ X :
(x1 6= x2 ∧ N(x1, x2) = true) ∧
(x3 6= x4 ∧ N(x3, x4) = false)

Observation:
Any non-trivial neighborhood is not invariant
under permutations.
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NFL Assumptions — Objective Functions

Let F ⊆ Y X be the set of “possible functions”.

Conclusion:

For F with minimal “smoothness”
NFL results do not hold.

Conclusion:

For F with a bounded number of local optima
NFL results do not hold.

No Free Lunch 07/02/02 28/39



NFL Assumptions — Objective Functions

Let F ⊆ Y X be the set of “possible functions”.

Conclusion:

For F with minimal “smoothness”
NFL results do not hold.

Conclusion:

For F with a bounded number of local optima
NFL results do not hold.

No Free Lunch 07/02/02 28/39



NFL Assumptions — Objective Functions

Let F ⊆ Y X be the set of “possible functions”.

Conclusion:

For F with minimal “smoothness”
NFL results do not hold.

Conclusion:

For F with a bounded number of local optima
NFL results do not hold.

No Free Lunch 07/02/02 28/39



NFL Assumptions — Performance Measures

Randomized search heuristics do re-evaluate.

Re-evaluations do influence the computation
time.

NFL results have limited implications for
consideration of computation time.

No Free Lunch 07/02/02 29/39



NFL Assumptions — Optimization Scenarios

Black Box Optimization:

Randomized search heuristic has to work for all
f ∈ F , where F ⊆ Y X is complexity restricted.

Possible complexity restrictions:

evaluation time restricted

representation size restricted

Kolmogoroff complexity restricted

No Free Lunch 07/02/02 30/39



The ANFL Theorem

The Almost No Free Lunch Theorem:

X = {0, 1}n, Y = {0, 1, . . . , N − 1}, f : X → Y ,
A a randomized search algorithm

|{f ∗ : {0, 1}n → {0, 1, . . . , N} | f ∗ agrees with f

on ≥ 2n − 2n/3 inputs and A finds the max. of f ∗

within 2n/3 steps with prob. ≤ 2−n/3 }| ≥ N 2n/3−1.

For exp. many functions f ∗ : C(f ∗) = C(f) + O(n)

where C is evaluation time, circuit representation

size, or Kolmogoroff complexity
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Proof of the ANFL Theorem (I)

A: randomized search algorithm

f : {0, 1}n → {0, 1, . . . , N − 1}: function,
such that A is efficient on f

Consider first 2n/3 steps of A on f .

q(x) = Prob(A visits x in the first 2n/3 steps)

∑

x∈{0,1}n

q(x)

≤ 2n/3
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Proof of the ANFL Theorem (II)

Definition for b ∈ {0, 1}2n/3:

Sb := {x ∈ {0, 1}n | ∀i ∈ {1, 2, . . . , 2n/3} : xi = bi}

Observations:

∀b ∈ {0, 1}2n/3 : |Sb| = 2n/3

∣

∣

{

Sb | b ∈ {0, 1}2n/3
}
∣

∣ = 22n/3

∀b 6= b′ ∈ {0, 1}2n/3 : Sb ∩ Sb′ = ∅
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Proof of the ANFL Theorem (III)

Definition:

q∗(b) := Prob(A visits Sb in the first 2n/3 steps)

Obvious: q∗(b) ≤
∑

x∈Sb

q(x)

Conclusion: ∃b∗ : q∗(b∗) ≤ 2n/3

22n/3 = 2−n/3
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Proof of the ANFL Theorem (III)

Definition:
f ∗ : {0, 1}n → R with

∀x /∈ Sb∗ : f ∗(x) = f(x)

∃x∗ ∈ Sb∗ : f ∗(x∗) = N

Observations:

There are at least N 2n/3

− 1 such f ∗.

Prob(A optimizes f ∗ in ≤ 2n/3 steps) ≤ 2−n/3
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Proof of the ANFL Theorem (III)

Problem: Almost all such f ∗ are hard to
represent and evaluate.

Solution:

f ∗
x∗,c(x) =











f(x) x /∈ Sb∗

N x = x∗

c otherwise

There are N · 2n/3 such functions f ∗
x∗,c.

�
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NFL Implications

The (improved) NFL is a valid theorem.

Be careful with claims like “algorithm A is
better than algorithm B”.

If someone claims “In my application domain
NFL results do not hold” he or she is prob. right.

When measuring computation time, NFL is
not helpful.

NFL has little impact on research.

The ANFL Theorem restricts what can be
achieved.
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