ECLab - Summer Lecture Series, 2003

Lecture 2: Conducting Empirical Investigations in Multiagent Systems and Parallel Models

Lecturers: Adrian Grajdeanu & Liviu Panait

Multiagent Learning

- Learning = improving performance with accumulated experience, as indicated by a metric measure (Mitchell, '97)
- Multiagent Learning = improving the performance of individual agents or of teams of agents in a MAS setting
- We assume learning affects more than one agent
- Throughout the lecture, EC is THE learning technique

MAS Evolutionary Learning

MAS Evolutionary Learning					
Team Learning	Teammate Learning		_		
Heterogeneity of Team?	Optimality?	Communicatio	Problem Decompositior		
	Locality of Reward?				
	Competition or Cooperation?				
	Teammate Modeling?	5	_		

Team Learning

- EC particularly suited for team learning
- An individual codes for the behavior of an entire team
- Relatively similar to standard EC
- Team composition
 - domain specific (soccer)
 - scalable to larger teams (MAV)

ECLab - Summer Lecture Series, 2003

Heterogeneity and Performance

- Adding heterogeneity increases performance IF ENOUGH TIME IS AVAILABLE and
 - in domains that require task specialization (Balch, '98)
 - in inherently decomposable domains (Bongard, '00)
 - in domains that require increased number of different skills (Potter et al, '01)

Empirical Investigations in Team Learning

Team Learning Approaches

- an individual contains a single behavior used for all agents

- an individual contains one behavior for each of the agents

slower, potentially non-scalable, allows agent specialization
restricted inter-breeding may be better (Luke and Spector, '96)

- an individual codes for team behaviors composed of heterogeneous groups

- usually requires additional parameters for coding and manipulating the

- Empirical investigations in team learning are very similar to those in standard EC
 - analysis of performance is straightforward
 - best-so-far curves
 - standard statistics/visualization tools
- How to measure scalability?

• Homogeneous Team Learning

• Heterogeneous Team Learning

of homogeneous behaviors

- breeding for hybrid teams?

Hybrid Team Learning

hybrid teams

- fast, scalable, possible suboptimal results

- can potentially code for any homogeneous team

learning team decomposition (Hara and Nagao, '99)

- plot learning curves for different numbers of agents
- plot performance versus number of agents
- How to measure heterogeneity?
 - problematic in GP
- How to measure and quantify the relation between heterogeneity and domain features?

Teammate Learning

MAS Evolutionary Learning				
Team Learning	Teammate Learning			
Heterogeneity of Team?	Optimality?) Mir	Deco	
	Locality of Reward?	nuni	mpo	
	Competition or Cooperation?	catio	sitio	
	Teammate Modeling?	-	2	

Teammate Learning

- Introduction
- Research Directions
- Issues
- Conduction Empirical Investigations

ECLab - Summer Lecture Series, 2003

Teammate Learning

- Agents performing own learning processes
 - decentralized learning
 - closer to the concept of MAS
- Teammate learning better than team learning (Iba, '96, '98)
- Teammate learning worse than team learning (Miconi, '03)
- Theoretical comparisons (Jansen and Wiegand, '03)

Coevolution for MAS learning

ECLab - Summer Lecture Series, 2003

Teammate Learning Teammate Learning • Introduction MAS Evolutionary Learning • Research Directions **Team Learning Teammate Learning** Problem Decomposition Communication Heterogeneity of Team? • Issues Optimality? Locality of Reward? Conduction Empirical Investigations Competition or Cooperation? Teammate Modeling? ECLab - Summer Lecture Series, 2003 ECLab - Summer Lecture Series, 2003 Optimality Locality of Reward • Search influenced by *performance* and *balance* • Influences performance (Panait et al, '03) • Influences heterogeneity • Cooperative tasks with joint reward functions - standard algorithms not guaranteed to find optima, even with learning speed 'relaxed' settings locality of reward - robustness of solutions? team heterogeneity · better when teamed with optimal collaborator · better when teamed with many other collaborators performance • Competitive tasks domain particularities - what is optimal? · duel methodology • Future research opportunities: automatic adjustment of locality • renaissance-man methodology • Good news: fertile area for future research ECLab - Summer Lecture Series, 2003 ECLab - Summer Lecture Series, 2003

Cooperation or Competition

- No clear relation among agents, relations might change over time
- Learning opportunities
 - manipulation
 - exploitation of other agents' faults
 - mutual trust
 - reciprocity

ECLab - Summer Lecture Series, 2003

Teammate Learning

- Introduction
- Research Directions
- Issues
- Conduction Empirical Investigations

Teammate Modeling

- Recursive modeling
- Flavors
 - single focus of learning
 - modeling combined with learning
- Initial beliefs are VERY important

ECLab - Summer Lecture Series, 2003

Issues in Team Learning

- Search Space
- Red Queen Effect
- Exploration
- Credit Assignment
- Learning Cycles
- Loss of Gradient
- Mediocre Stability

Red Queen Effect

- "Change in a moving landscape may go unnoticed"
- Individuals are evaluated in the context of other individuals
- Subjective performance metrics may hide progress, stagnation, or learning cycles

ECLab - Summer Lecture Series, 2003

Credit Assignment

- Inter- and intra- agent credit assignment
- Individual reinforcement information may influence agents to learn greedy strategies focused on individual, rather than team, performance

Exploration

- An agent's exploration process affects the learning processes of other agents, with later repercussions on the agent's learning process
- Similar to an agent learning in a dynamic environment, where the dynamicity is directly related to the agent's behavior

Loss of Gradient Mediocre Stability ECLab - Summer Lecture Series, 2003 ECLab - Summer Lecture Series, 2003 Teammate Learning Empirical Investigations in Teammate Learning

- Introduction
- Research Directions
- Issues
- Conduction Empirical Investigations

- What is being measured?
- Performance is subjective (Red Queen Effect)
 - possible solutions
 - choose domains where objective performance measure is available (Panait and Luke, '02), (Bucci and Pollack, '03)
 - use benchmarks
 - dominance tournament (Stanley and Miikkulainen, '02)
 - hall of fame? (Rosin and Belew, '97)
 - measure for team heterogeneity?
 - measure for sizes of basins of attractions?
- What is meant by 'better' or 'best'?
 - (Panait and Luke, '02)
 - duel methodology
 - renaissance-man methodology

Empirical Investigations in Teammate Learning

- What are the assumptions of the experiments?
 - global information does not guarantee optimality
 - recommendations to restrict assumptions about other agents when their behaviors are unknown
 - coevolution may be improved when assuming other agents are competing or cooperating
- How to select problem domains?
 - "my method is better than your method" stage of investigation
 - for theoretical analysis, use very simple domains (game matrixes)
 - pay attention to assumptions

Empirical Investigations in Teammate Learning

- Visualization
 - visualization needs to capture the relation among different coevolutionary algorithms
 - plot the trajectories of the search process
 - search driven by balance and performance
 - visualization of search space: basins of attraction?
 - assess difficulty of domain based on sizes of basins of attraction for suboptimal peaks
- Statistical methods
 - because performance assessment is subjective, the results of statistical tests will depend on the other 'components'
 - co-adaptation and learning cycles
 - time may be an especially important characteristic
 - assess performance based on final results for all agents

ECLab - Summer Lecture Series, 2003

ECLab - Summer Lecture Series, 2003

MAS Evolutionary Learning				
Team Learning	Teammate Learning	~		
Heterogeneity of Team?	Optimality?	Communicatio	Proble Decompo	
	Locality of Reward?			
	Competition or Cooperation?		sitior m	
	Teammate Modeling?	7		

Problem Decomposition

- Flavors
 - task decomposition
 - behavior decomposition
 - layered learning
 - shaping
- Questions:
 - automatic problem decomposition
 - decentralized problem decomposition

Communication

- MAS + unrestricted communication = centralized system (Stone and Veloso, '00)
- Via rapidly decaying information
 - may increase the search space
 - may improve performance
 - emergent vocabularies
- Via slowly decaying information (example: pheromones)
 - long-lasting shared information
- Via embodiment

ECLab - Summer Lecture Series, 2003

Empirical Investigations and Communication

- What are the *assumptions*?
- Additional parameters to tune
 - range, bandwidth
 - evaporation and diffusion rates
 - communication topologies
- How to measure relation between learning algorithm and communication?
- Emergent vocabularies?
- Test communication via embodiment?

ECLab - Summer Lecture Series, 2003

Conclusions

- Empirical investigations in team learning
 - pretty much straightforward
 - analysis of heterogeneity and scalability
- Empirical investigations in teammate learning
 - subjective evaluation \rightarrow no clear performance criteria
 - visualize and measure balance and its relation to performance as the components driving the search process
 - assumptions about other agents are very important
- Empirical investigations and problem decomposition
 - representations
- Empirical investigations and communication
 - assumptions
 - test of emergent vocabularies
 - test of communication via embodiment

Conclusions

- M. Wooldridge and N. Jennings, (1995), "Intelligent Agents: Theory and Practice", *The Knowledge Engineering Review*, 10(2):115-152
- N.R. Jennings, K. Sycara, and M. Wooldridge, (1998), "A Roadmap of Agents Research and Development", *Autonomous Agents and Multi-Agent Systems*, 1:7-38
- T. Mitchell, (1997), Machine Learning, McGraw-Hill
- S. Luke and L. Spector, (1996), "Evolving Teamwork and Coordination with Genetic Programming", In Genetic Programming 1996: Proceedings of the First Annual Conference, MIT Press
- A. Hara and T. Nagao, (1999), "Emergence of cooperative behavior using ADG; Automaticaly Defined Groups", In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99)
- T. Balch, (1998), *Behavioral Diversity in Learning Robot Teams*, PhD Thesis, College of Computing, Georgia Institute of Technology
- J. Bongard, (2000), "The Legion System: A Novel Approach to Evolving Heterogeneity for Collective Problem Solving", In Genetic Programming: Proceedings of EuroGP'2000, Springer-Verlag
- M. Potter, L. Meeden, and A. Schultz, (2001), "Heterogeneity in the Coevolved Behaviors of Mobile Robots: The Emergence of Specialists", In Proceedings of The Seventeenth International Conference on Artificial Intelligence (IJCAI-2001)
- H. Iba, (1996), "Emergent Cooperation for Multiple Agents Using Genetic Programming", In Parallel Problem Solving from Nature IV: Proceedings of the International Conference on Evolutionary Computation
- H. Iba, (1998), "Evolutionary Learning of Communicating Agents", Information Sciences, Volume 108
- T. Miconi, (2003), "When Evolving Populations is Better than Coevolving Individuals: The Blind Mice Problem", In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-03)

ECLab - Summer Lecture Series, 2003

- T. Jansen and R. P. Wiegand, (2003), "Exploring the Explorative Advantage of the Cooperative Coevolutionary (1+1) EA", In *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003)*
- L. Panait, R. P. Wiegand, and S. Luke, (2003), "Improving Coevolutionary Search for Optimal Multiagent Behaviors", In *Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-2003)*
- L. Panait and S. Luke, (2002), "A Comparison of Two Competitive Fitness Functions", In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002)
- A. Bucci and J. Pollack, (2003), "Focusing versus Intransitivity: Geometrical Aspects of Co-evolution", In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003)
- K. O. Stanley and R. Miikkulainen, (2002), "The Dominance Tournament Method of Monitoring Progress in Coevolution", In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002) Workshop Program
- C. Rosin and R. Belew, (1997), "New Methods for Competitive Coevolution", *Evolutionary Computation Journal*, 5(1):1-29
- P. Stone and M. Veloso, (2000), "Multiagent Systems: A Survey from a Machine Learning Perspective", Autonomous Robots, 8(3):345-383