"Global" Analyses *Summer Lecture Series 2002*

Thomas Jansen

tjansen.gmu.edu or Thomas.Jansen@cs.uni-dortmund.de

Before we start: A Word on "Global"

Global can have many different meanings. We use it in the sense of global in time.

Why? Because it is shorter than

concerned with a substantial part of a run and not only with a very limited number of steps.

08/01/02

2/56

Nothing else is intended.

- Convergence
- Expected Optimization Time
- Local vs. Global Analysis
- Conclusions

Convergence

- What is Convergence?
- What is Convergence to a Function Value?
- What is Gene Convergence?
- What is Premature Convergence?
- Is a GA a Function Optimizer?
- Expected Optimization Time
- Local vs. Global Analysis
- Conclusions

- Convergence
- Expected Optimization Time
 - What is Expected Optimization Time?

'Global" Analvses

08/01/02

3/56

- Why should we care?
- Proof Methods
- Local vs. Global Analysis
- Conclusions

- Convergence
- Expected Optimization Time
- Local vs. Global Analysis
 - Local Performance Measures
 - Example: Local Measures Can Be Misleading

'Global" Analvses

08/01/02

3/56

Conclusions

- Convergence
- Expected Optimization Time
- Local vs. Global Analysis
- Conclusions
 - Summary
 - "Take Home Message"

"Convergence" as known from analysis not sufficient.

 (X_n) sequence of random variables L random variable

When do we say that (X_n) converges to L?

"Convergence" as known from analysis not sufficient.

4/56

 (X_n) sequence of random variables L random variable

When do we say that (X_n) converges to L?

 (X_n) converges almost surely to L: \Leftrightarrow Prob $\left(\lim_{n \to \infty} |X_n - L| = 0\right) = 1$

Other definitions of convergence known.

Consider any evolutionary algorithm. F_t : best function value in the *t*-th generation (F_t) is sequence of random variables constant *c* is (degenerated) random variable Thus: We can ask whether (F_t) converges to *c*.

Consider any evolutionary algorithm. F_t : best function value in the t-th generation (F_t) is sequence of random variables constant c is (degenerated) random variable Thus: We can ask whether (F_t) converges to c. *f*-value

aenera

Consider any evolutionary algorithm. F_t : best function value in the t-th generation (F_t) is sequence of random variables constant c is (degenerated) random variable Thus: We can ask whether (F_t) converges to c. f-value

denera

Consider any evolutionary algorithm. F_t : best function value in the *t*-th generation

 (F_t) is sequence of random variables constant *c* is (degenerated) random variable

Thus: We can ask whether (F_t) converges to c.

aenera

f-value

Consider EA with population size $\mu > 1$ and binary representation with length n. $\forall i \in \{1, \dots, n\} : B_t^{(i)} := \left(\sum_{j=1}^{\mu} x_t^{(i)}[j]\right) / \mu$ average bit value at position i in generation t

 $(B_t^{(i)})$ is random variable.

Consider EA with population size $\mu > 1$ and binary representation with length *n*. $\forall i \in \{1, \dots, n\} : B_t^{(i)} := \left(\sum_{j=1}^{\mu} x_t^{(i)}[j]\right) / \mu$ average bit value at position *i* in generation *t*

 $(B_t^{(i)})$ is random variable.

We say the *i*-th bit converges if $(B_t^{(i)})$ converges almost surely to 0 or 1.

We say the population converges if all bits converge.

We say the population converges if all bits converge.

Caution: Often:

"*i*-th bit is converged" if $B_t^{(i)} \in \{0, 1\}$ for some t.

"population is converged" if this holds for all $B_t^{(i)}$.

We say the population converges if all bits converge. **Caution: Often:** "*i*-th bit is converged" if $B_t^{(i)} \in \{0, 1\}$ for some *t*.

"population is converged" if this holds for all $B_t^{(i)}$.

In GAs mutation sometimes considered not important. Crossover cannot change anything on converged bits.

7/56

Convergence — What is Premature Convergence?

Gene Convergence Without Convergence to an Optimal Function Value is called Premature Convergence.

Convergence — Is a GA a Function Optimizer?

An algorithm is called a function optimizer if it optimizes any function with probability 1.

Is a GA a function optimizer?

Convergence — Is a GA a Function Optimizer?

An algorithm is called a function optimizer if it optimizes any function with probability 1.

- Is a GA a function optimizer?
- That depends on the GA.
- The "canonical GA" is not a function optimizer.

The "canonical GA" maintaining the best solution found is a function optimizer.

9/56

Conditions for Convergence

Consider generational GA with population size μ , binary representation, string length n, crossover, mutation, and selection. Model as Markov chain:

- population plus "best-so-far" is state
- size of state space: $2^{(\mu+1)\cdot n}$
- model crossover, mutation, selection as matrices C, M, S
- \bullet get transition matrix as $C \cdot M \cdot S$

Conditions for Convergence

(II)

Some definitions: Markov chain with transition matrix P

- For states i, j we say $i \rightarrow j$ if there exists $m \in \mathbb{N}$ such that $P^m[i, j] > 0$.
- A state *i* is essential, if for all states *j* we have $(i \rightarrow j) \Rightarrow (j \rightarrow i)$.
- P is irreducible if \forall states i, j we have $i \rightarrow j$.
- *P* is diagonal-positive if all diagonal elements are positive.

Conditions for Convergence

Results:

- P = CMS irreducible and diag.-positive \Rightarrow state *i* sub-optimal \Leftrightarrow *i* not essential
- P = CMS with C, M, S diag.-positive and Mirreducible \Rightarrow Markov chain converges to global optimum

In simple words:

If a GA keeps track of "best-so-far" and each state is reachable via a sequence of generations, then the GA is a function optimizer.

12/56

- Convergence
- Expected Optimization Time
- Local vs. Global Analysis
- Conclusions

- Convergence
- Expected Optimization Time
 - What is Expected Optimization Time?

08/01/02

13/56

- Why should we care?
- Proof Methods
- Local vs. Global Analysis
- Conclusions

What is Expected Optimization Time?

Consider EA maximizing some function f.

Let *T* denote the number of steps (function evaluations) before some *x* with $f(x) = \max\{f(y)\}$ belongs to the current population for the first time.

E(T) is called the expected optimization time.

Why should we care?

Suppose you want to do optimization.

Is Convergence to an Optimal *f*-Value an Issue?

Why should we care?

Suppose you want to do optimization. Is Convergence to an Optimal *f*-Value an Issue? Perhaps in theory, but not in practice. Why should we care?

Suppose you want to do optimization. Is Convergence to an Optimal *f*-Value an Issue? Perhaps in theory, but not in practice. Crucial: When is optimization efficient? Thus, expected optimization time is most important measure.

Methodology

- Consider simplified algorithms.
- Consider simplified example problems.
- Give bounds for expected optimization time or similar measures.
- Analyze these bounds for growing dimension of the search space.
- Do not use unproven assumptions or further simplifications.

The (1+1) EA

Maximize $f: \{0,1\}^n \to \mathbb{R}$.

1. Initialization

Choose $x \in \{0, 1\}^n$ uniformly at random.

2. Mutation

Create $y \in \{0,1\}^n$ by bit-wise mutation of x with mutation probability 1/n.

3. Selection

If $f(y) \ge f(x)$, replace x by y.

4. Continue at 2.

Proof Methods

- f-based partitions: simple, intuitive, sometimes surprisingly powerful
- typical run: generalization of *f*-based partitions
- expected advance: powerful method for lower bounds
- potential method: powerful, not very intuitive, difficult to use

Method: *f*-based Partitions

 P_1, P_2, \ldots, P_l partition of search space $\{0, 1\}^n$ with

• $\forall i \in \{1, \dots, l\} : P_i \neq \emptyset$ • $P_l = \{x \in \{0, 1\}^n \mid f(x) = \max\{f(y) \mid y \in \{0, 1\}^n\}\}$ • $\forall i \in \{1, \dots, l-1\}, x \in P_i, y \in P_{i+1} : f(x) < f(y)$

 (\mathbf{I})

Method: *f*-based Partitions

 P_1, P_2, \ldots, P_l partition of search space $\{0, 1\}^n$ with

 (\mathbf{I})

"Global" Analyses

08/01/02

19/56

•
$$\forall i \in \{1, \dots, l\}: P_i \neq \emptyset$$

• $P_l = \{x \in \{0, 1\}^n \mid f(x) = \max\{f(y) \mid y \in \{0, 1\}^n\}\}$
• $\forall i \in \{1, \dots, l-1\}, x \in P_i, y \in P_{i+1}: f(x) < f(y)$

$$s_{x,y} := \left(\frac{1}{n}\right)^{\mathsf{H}(x,y)} \cdot \left(1 - \frac{1}{n}\right)^{n - \mathsf{H}(x,y)}$$

Method: *f*-based Partitions

Upper bound:
$$s_i := \min\left\{\sum_{y \in P_j, j > i} s_{x,y} \mid x \in P_i\right\}$$

$$\mathsf{E}(T) \le \sum_{i=1}^{l-1} \frac{1}{s_i}$$

"Global" Analyses 08/01/02 20/56

(II)

Upper bound:
$$s_i := \min\left\{\sum_{y \in P_j, j > i} s_{x,y} \mid x \in P_i\right\}$$

$$\mathsf{E}(T) \le \sum_{i=1}^{l-1} \frac{1}{s_i}$$

Lower bound:
$$S_i := \max\left\{\sum_{y \in P_j, j > i} s_{x,y} \mid x \in P_i\right\}$$

$$\mathsf{E}(T) \ge \max\left\{\frac{|P_i|}{2^n} \cdot \frac{1}{S_i} \mid 1 \le i < l\right\}$$

"Global" Analyses 08/01/02 20/56

(II)

(III)

Example: Upper bound for $JUMP_m$, $m \in \{1, \ldots, n\}$

 $\mathsf{JUMP}_m(x) := \begin{cases} m+|x| & \text{if } (|x| \le n-m) \lor (|x|=n) \\ n-|x| & \text{otherwise} \end{cases}$ with |x| = ONEMAX(x) $\mathsf{Jump}(x)$ \mathcal{m} $|\mathcal{X}|$ m h \mathcal{N}

(IV)

 $i \in \{1, \dots, n\} \colon P_i := \{x \in \{0, 1\}^n \mid \mathsf{JUMP}_m(x) = i\}$ $P_{n+1} := \{1^n\}$

(IV)

 $i \in \{1, \dots, n\} \colon P_i := \{x \in \{0, 1\}^n \mid \mathsf{JUMP}_m(x) = i\}$ $P_{n+1} := \{1^n\}$

$$i \notin \{n-m,n\} \colon s_i \ge {\binom{n-i}{1}}\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \ge \frac{n-i}{en}$$
$$s_{n-m} \ge \left(\frac{1}{n}\right)^m \left(1-\frac{1}{n}\right)^{n-m} \ge \frac{1}{en^m}$$

"Global" Analyses 08/01/02 22/56

(IV)

 $i \in \{1, \dots, n\} \colon P_i := \{x \in \{0, 1\}^n \mid \mathsf{JUMP}_m(x) = i\}$ $P_{n+1} := \{1^n\}$

$$i \notin \{n-m,n\} \colon s_i \ge {\binom{n-i}{1}} \frac{1}{n} \left(1-\frac{1}{n}\right)^{n-1} \ge \frac{n-i}{en}$$
$$s_{n-m} \ge \left(\frac{1}{n}\right)^m \left(1-\frac{1}{n}\right)^{n-m} \ge \frac{1}{en^m}$$

$$\mathsf{E}(T) \le en^m + \sum_{i=1}^n \frac{en}{n-i} = O(n^m + n\log n)$$

Describe a "typical run" in phases by

- partition P_1, \ldots, P_l
- upper and lower bounds $t_1, \ldots, t_l, T_1, \ldots, T_l$

Find upper bounds on failure probabilities p_1, \ldots, p_l .

Describe a "typical run" in phases by

• partition P_1, \ldots, P_l

• upper and lower bounds $t_1, \ldots, t_l, T_1, \ldots, T_l$ Find upper bounds on failure probabilities p_1, \ldots, p_l . Prob $\left(T \leq \sum_{i=1}^{l} t_i\right) \leq \sum_{i=1}^{l} p_i$ Prob $\left(T \geq \sum_{i=1}^{l} T_i\right) \leq \sum_{i=1}^{l} p_i$

Describe a "typical run" in phases by

• partition P_1, \ldots, P_l

• upper and lower bounds $t_1, \ldots, t_l, T_1, \ldots, T_l$ Find upper bounds on failure probabilities p_1, \ldots, p_l . Prob $\left(T \leq \sum_{i=1}^{l} t_i\right) \leq \sum_{i=1}^{l} p_i$ Prob $\left(T \geq \sum_{i=1}^{l} T_i\right) \leq \sum_{i=1}^{l} p_i$

$$\mathsf{E}(T) \ge \left(1 - \sum_{i=1}^{t} p_i\right) \cdot \sum_{i=1}^{t} t_i$$

Example: Upper bound for Real Royal Road Function *R* for one-point crossover

 (\mathbf{II})

08/01/02

24/56

$$R_m(x) := \begin{cases} 2n^2 & \text{if } x = 1^n \\ n|x| + b(x) & \text{if } |x| \le n - m \\ 0 & \text{otherwise} \end{cases}$$

where |x| = ONEMAX(x) and b(x) = length of longest block of 1-bits in x

1. Initialization Choose pop. of size μ uniformly at random.

2. Crossover

With prob. p_c create z by one-point crossover, otherwise choose z from population.

3. Mutation

Create z' by bit-wise mutation of z.

4. Selection

Add z' to the population. Remove one member with minimal f-value and maximal number of copies.

5. Continue at 2.

26/56

Theorem: For $p_c \leq 1 - \varepsilon$ ($\varepsilon > 0$ constant), $m \leq \lceil n/3 \rceil$, $\mu \geq m + 1$: $\mathsf{E}(T) = O\left(n^2 \mu m + n^2 \log n + n\mu \log \mu + \mu^2/p_c\right)$

For p_c constant, $\mu = O(n)$: $E(T) = O(n^3 \cdot \mu)$

Proof Method: Variant of "Typical Run" Describe typical run with 5 phases. Find upper bound on expected length for each phase. Get result by addition.

(V)

Phase 1

Assumption: after random initialization Goal: There is a member of the population with at most n - m ones or exactly n ones. Expected Length s(n) + o(1)

(VI)

Phase 2

Assumption: Phase 1 finished Goal: All members of the population have exactly n - m ones or optimum found. Expected Length $O(n^2 \cdot \mu/m)$

Proof: Prob (increase number of 1-bits) = $\Omega\left(\frac{m}{en}\right)$

Phase 3

Assumption: Phase 2 finished Goal: All members of the population have exactly n - m ones and these ones in one block, or optimum found.

Expected Length: $O(n^2 \log n + n\mu \log \mu)$

Proof: Case 1: All members have b(x) = i. Then 2-bit mutation needed. Prob. for such mutation $\ge (n - m - i)/(en^2)$; sum $O(n^2 \log n)$ Case 2: $\exists x$ with b(x) = i and j > 0 have larger *b*-value Sufficient: Choose one of the *j* and don't change it. Prob. for this event $\Omega(\mu/j)$; sum $O(n\mu \log \mu)$.

Phase 4

Assumption: Phase 3 finished Goal: all possible x with |x| = n - m and b(x) = n - m in population, or optimum found Expected Length: $O(n^2 \mu m)$ Proof: essential: $\mu \ge m + 1 =$ #different such strings 2-bit-mutation sufficient, Prob. = $\Omega(1/n^2)$ Prob. choose appropriate parent $\ge 1/\mu$ m such events sufficient

(IX)

Phase 5

Assumption: Phase 4 finished Goal: find optimum

Expected Length: $O(\mu^2/p_c)$ Proof: Prob (choose $1^{n-m}0^m$ and 0^m1^{n-m} for crossover) $\geq p_c/\mu^2$ Prob (choose crossover position "in the middle") $\geq 1/3$

31/56

(I)

Define measure of advance F (f-value, Hamming distance, ...) F_t : advance after t steps

> $E(T) \geq t \cdot \operatorname{Prob} (T \geq t)$ = $t \cdot \operatorname{Prob} (F_t \leq \Delta)$ = $t \cdot (1 - \operatorname{Prob} (F_t > \Delta))$

(I)

Define measure of advance F (f-value, Hamming distance, ...) F_t : advance after t steps

> $E(T) \geq t \cdot \operatorname{Prob} (T \geq t)$ = $t \cdot \operatorname{Prob} (F_t \leq \Delta)$ = $t \cdot (1 - \operatorname{Prob} (F_t > \Delta))$

Markov: Prob $(F_t > \Delta) \leq \mathsf{E}(F_t) / \Delta$

$$\mathsf{E}(T) \ge t \cdot \left(1 - \frac{\mathsf{E}(F_t)}{\Delta}\right)$$

(II)

Example: Lower bound for long-path function Definition: $n \geq 1$, k > 1, $(n-1)/k \in \mathbb{N}$ long k-path of dimension 1: $P_1^k := (0, 1)$ long k-path of dimension n-k: $\underline{P_{n-k}^k} = \overline{(v_1, \dots, v_l)}$ long k-path of dimension n: $P_{n}^{k} := (0^{k} v_{1}, 0^{k} v_{2}, \dots, 0^{k} v_{l},$ $0^{k-1}1v_l, 0^{k-2}1^2v_l, \ldots, 01^{k-1}v_l, 1^kv_l,$ $1^{k}v_{l-1}, 1^{k}v_{1})$

Path Properties:

 P_n^k contains $(k+1)2^{(n-1)/k} - k + 1$ different points.

 $\forall i \in \{1, \dots, k-1\}:$ x with at least i successors on path: i-th successor has Hamming distance i and all other points have different Hamming distances

Definition: $\operatorname{Path}_{k}(x) :=$ $\begin{cases} n^{2} + l & \text{if } x \text{ is } l \text{-th point of } P_{n}^{k} \\ n^{2} - n \sum_{i=1}^{k} x_{i} - \sum_{i=k+1}^{n} x_{i} & \text{if } x \notin P_{n}^{k} \end{cases}$ $\overset{\text{`Global" Analyses}}{\overset{\text{``Global" Analyses}}$

Theorem: (1+1) EA on $\operatorname{Path}_{\sqrt{n-1}}$ E $(T) = \Omega\left(n^{3/2} \cdot 2^{\sqrt{n}}\right)$

Proof Method: Prob (first path point not after "bridge") $\geq \frac{1}{2}$

Give lower bound on expected optimization time when first point is not after the "bridge" with method of expected advance.

(V)

 T_i : optimization time when started in *i*-th path point F: "in *t* stops no mutation of $> \sqrt{n-1}$ bits"

 E_t : "in t steps no mutation of $\geq \sqrt{n-1}$ bits"

(V)

 T_i : optimization time when started in *i*-th path point

 E_t : "in t steps no mutation of $\geq \sqrt{n-1}$ bits"

 $|\mathsf{Prob}(E_t) \ge 1 - t \cdot n^{-\sqrt{n-1}}|$

 (\mathbf{VI})

d: distance between starting point and optimum a_j : distance between current point and starting point after *j* generations

 (\mathbf{VI})

d: distance between starting point and optimum a_j : distance between current point and starting point after *j* generations

$$\begin{split} \mathsf{E}(T_i) &\geq \mathsf{Prob}(E_t) \cdot \mathsf{E}(T_i \mid E_t) \\ &\geq \mathsf{Prob}(E_t) \cdot t \cdot \mathsf{Prob}(a_t < d \mid E_t) \\ &= \mathsf{Prob}(E_t) \cdot t \cdot (1 - \mathsf{Prob}(a_t \geq d \mid E_t)) \end{split}$$
 Markov:

 $\mathsf{E}(T_i) \ge \mathsf{Prob}(E_t) \cdot t \cdot \left(1 - \frac{\mathsf{E}(a_t \mid E_t)}{d}\right)$

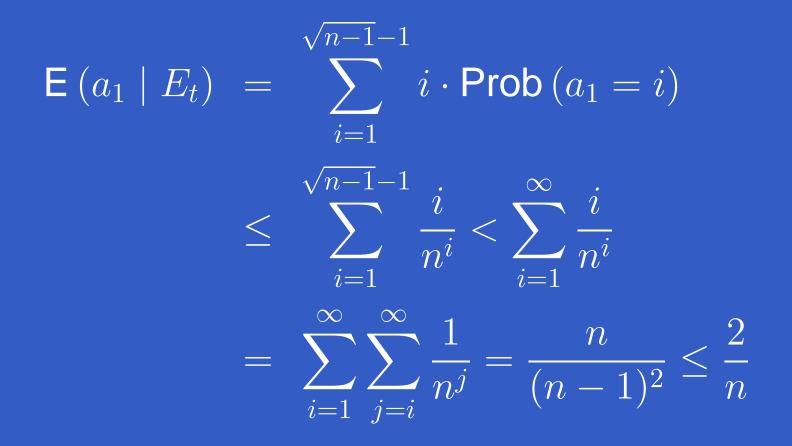
Due to Path Property: $\mathsf{E}(a_t \mid E_t) \leq t \cdot \mathsf{E}(a_1 \mid E_t)$

$$\mathsf{E}(T_i) \ge t \cdot \mathsf{Prob}(E_t) \cdot \left(1 - \frac{t \cdot \mathsf{E}(a_1 \mid E_t)}{d}\right)$$

"Global" Analyses 08/01/02 38/56

 (\mathbf{VII})

(VIII)



39/56

(VIII)

$$\mathsf{E}(a_{1} \mid E_{t}) = \sum_{i=1}^{\sqrt{n-1}-1} i \cdot \mathsf{Prob}(a_{1}=i)$$

$$\leq \sum_{i=1}^{\sqrt{n-1}-1} \frac{i}{n^{i}} < \sum_{i=1}^{\infty} \frac{i}{n^{i}}$$

$$= \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} \frac{1}{n^{j}} = \frac{n}{(n-1)^{2}} \le \frac{2}{n}$$

Plugging in with $t = n^{3/2} \cdot 2^{\sqrt{n}-5}$ yields result.

39/56

Method: Potential Method

(I)

40/56

Define potential function $\Phi \colon \{0,1\}^n \to \mathbb{R}$ with

 $\begin{cases} x \in \{0,1\}^n \mid \Phi(x) = \max \{\Phi(y) \mid y \in \{0,1\}^n\} \}\\ \subseteq \ \{x' \in \{0,1\}^n \mid f(x') = \max \{f(y') \mid y' \in \{0,1\}^n\} \} \end{cases}$

Analyze EA on Φ but with acceptance given by f.

Method: Potential Method

Example: linear functions Obvious: Suffices to analyze linear functions with positive weights.

41/56

$$\Phi(x) := \sum_{i=1}^{n/2} x_i + \sum_{i=(n/2)+1}^{n} x_i$$

generation "successful" \Leftrightarrow child accepted and different from parent Find upper bound for number of successful generations until $\Phi(x)$ grows.

Overview

- Convergence
- Expected Optimization Time
- Local vs. Global Analysis
- Conclusions

Overview

- Convergence
- Expected Optimization Time //
- Local vs. Global Analysis
 - Local Performance Measures
 - Example: Local Measures Can Be Misleading

08/01/02

42/56

Conclusions

Local Performance Measures

- Local performance measures are often easier to estimate.
- Often they come with the promise of "global" predictions via repetition.

43/56

They seem to allow easy comparisons in special cases.

Local Performance Measures

Quality Gain: $Q_f^{(1+1) EA}(x) = E(f(x') - f(x))$ x current string, x' next current string

Progress Rate: $r_{f}^{(1+1) \text{ EA}}(x) = \mathbb{E} \left(\mathsf{H}(x, x_{\text{opt}}) - \mathsf{H}(x', x_{\text{opt}}) \right)$ x current string, x' next current string

44/5F

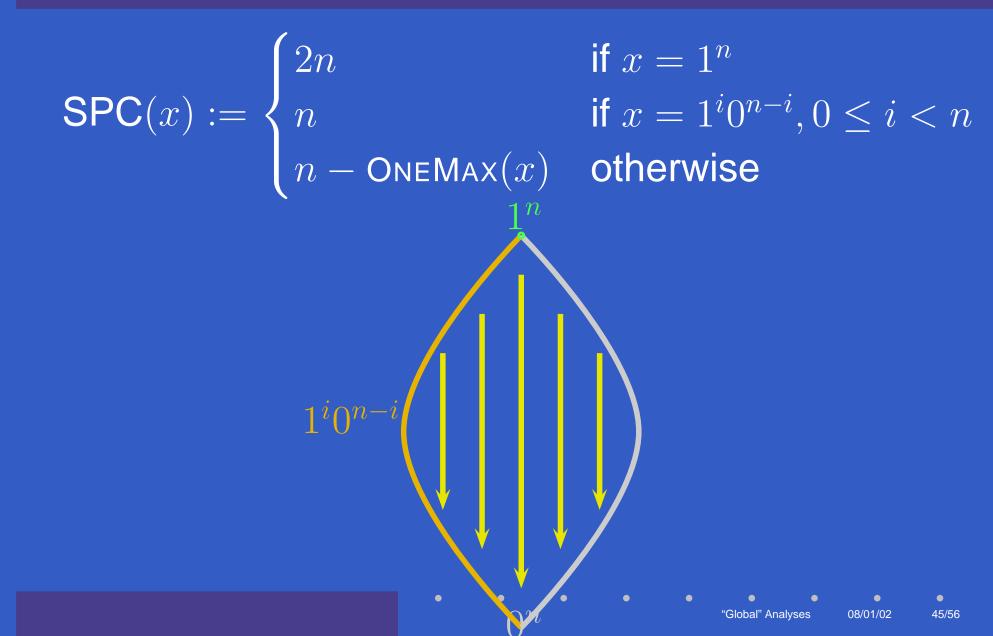
Local Performance Measures

Quality Gain: $Q_f^{(1+1) EA}(x) = E(f(x') - f(x))$ x current string, x' next current string

Progress Rate: $r_f^{(1+1) EA}(x) = E(H(x, x_{opt}) - H(x', x_{opt}))$ x current string, x' next current string Obvious: "bigger is better"

44/56

(Counter-)Example Function



The (1+1)*EA

Maximize $f: \{0,1\}^n \to \mathbb{R}$.

1. Initialization

Choose $x \in \{0, 1\}^n$ uniformly at random.

2. Mutation

Create $y \in \{0, 1\}^n$ by bit-wise mutation of x with mutation probability 1/n.

3. Selection

If f(y) > f(x), replace x by y.

4. Continue at 2.

Optimization of SPC

(1+1) EA: $E(T) = O(n^3)$ success probability in n^4 generations $\geq 1 - e^{-\Omega(n)}$

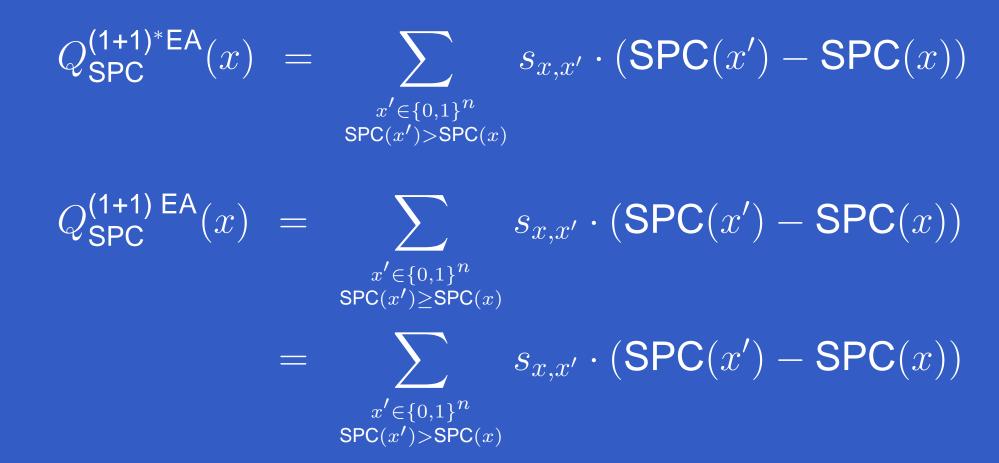
(1+1)*EA: $E(T) = n^{\Omega(n)}$ success probability in $n^{n/2}$ generations $\leq e^{-\Omega(n)}$

08/01/02

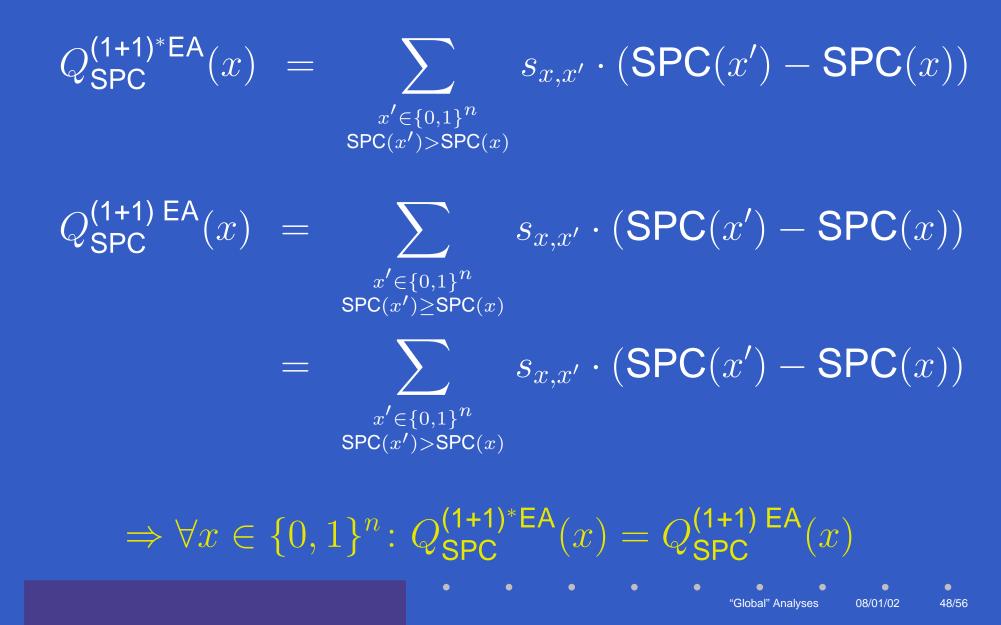
Quality Gain on SPC

 $Q_{\mathsf{SPC}}^{(1+1)^*\mathsf{EA}}(x) =$ $\sum s_{x,x'} \cdot (\mathsf{SPC}(x') - \mathsf{SPC}(x))$ $x' \in \{0,1\}^n$ $\mathsf{SPC}(x') > \mathsf{SPC}(x)$

Quality Gain on SPC



Quality Gain on SPC



For all points not on the plateau: (1+1) EA and (1+1)*EA accept the same strings. \Rightarrow progress rates equal

For all points not on the plateau: (1+1) EA and $(1+1)^*$ EA accept the same strings. \Rightarrow progress rates equal

On the plateau:

 $(1+1)^*EA$ only accepts direct jump to 1^n .

(1+1) EA accepts any step on the plateau.

(II)

On the plateau:

$$r_{\text{SPC}}^{(1+1)^*\text{EA}}\left(1^{i}0^{n-i}\right) = s_{1^{i}0^{n-i},1^n} \cdot \mathsf{H}\left(1^{i}0^{n-i},1^n\right)$$
$$= \left(\frac{1}{n}\right)^{n-i} \cdot \left(1-\frac{1}{n}\right)^{i} \cdot (n-i)$$
$$\leq \frac{n-i}{n^{n-i}} \in \left\{\frac{1}{n},\frac{2}{n^2},\dots,\frac{n}{n^n}\right\}$$

(III)

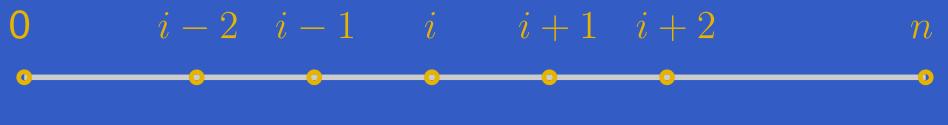
On the plateau:

$$r_{\text{SPC}}^{(1+1) \text{ EA}} \left(1^{i} 0^{n-i} \right) = \sum_{j=0}^{n} s_{1^{i} 0^{n-j}, 1^{j} 0^{n-j}} \cdot (j-i)$$

(III)

On the plateau:

$$r_{\text{SPC}}^{(1+1) \text{ EA}} \left(1^{i} 0^{n-i} \right) = \sum_{j=0}^{n} s_{1^{i} 0^{n-j}, 1^{j} 0^{n-j}} \cdot (j-i)$$



number of 1-bits

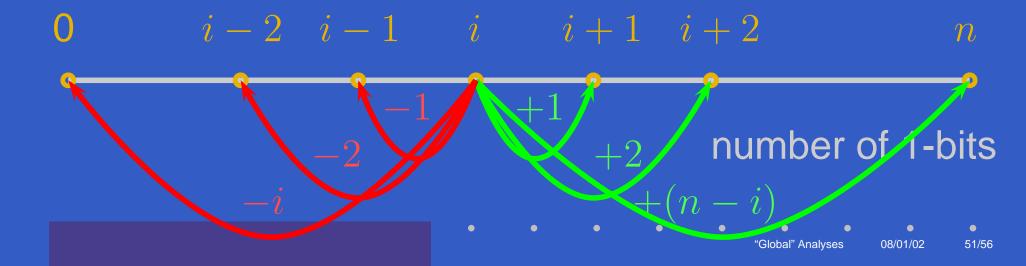
"Global" Analyses

08/01/02

(III)

On the plateau:

$$r_{\text{SPC}}^{(1+1) \text{ EA}} \left(1^{i} 0^{n-i} \right) = \sum_{j=0}^{n} s_{1^{i} 0^{n-j}, 1^{j} 0^{n-j}} \cdot (j-i)$$



(IV)

On the plateau:

In the half far from 1^n (i < n/2): $r_{SPC}^{(1+1) EA}(1^i 0^{n-i}) > 0$ only slightly larger then for the (1+1)*EA

In the half near to 1^n (i > n/2): $r_{\text{SPC}}^{(1+1) \text{ EA}} (1^i 0^{n-i}) < 0$ clearly smaller then for the $(1+1)^*$ EA

(IV)

On the plateau:

In the half far from 1^n (i < n/2): $r_{SPC}^{(1+1) EA}(1^i 0^{n-i}) > 0$ only slightly larger then for the (1+1)*EA

In the half near to 1^n (i > n/2): $r_{\text{SPC}}^{(1+1) \text{ EA}} (1^i 0^{n-i}) < 0$ clearly smaller then for the (1+1)*EA

Even more misleading then quality gain.

Overview

- Convergence
- Expected Optimization Time
- 🗕 Local vs. Global Analysis 🧹
- Conclusions

Overview

- Convergence
- Expected Optimization Time
- 🗕 Local vs. Global Analysis 🧹
- Conclusions
 - Summary
 - "Take Home Message"

Conclusions — Summary

- most EAs converge to global optimum
- expected optimization time is important measure
- different proof methods and analytical tools available
- stronger methods for populations and crossover needed
- Jocal measures can be very misleading

Ask yourself what you are really interested in.

Ask yourself what you are really interested in.

08/01/02

55/56

EAs can be analyzed like randomized algorithms.

- Ask yourself what you are really interested in.
- EAs can be analyzed like randomized algorithms.
- Keep your algorithm and your problem as simple as possible.

- Ask yourself what you are really interested in.
- EAs can be analyzed like randomized algorithms.
- Keep your algorithm and your problem as simple as possible.

55/56

Try to solve challenging problems.

- Ask yourself what you are really interested in.
- EAs can be analyzed like randomized algorithms.
- Keep your algorithm and your problem as simple as possible.

- Try to solve challenging problems.
- Be realistic about what you can do.

- Ask yourself what you are really interested in.
- EAs can be analyzed like randomized algorithms.
- Keep your algorithm and your problem as simple as possible.
- Try to solve challenging problems.
- Be realistic about what you can do.
- Remember: Proofs are nice, even in application oriented work.

Overview

- Convergence
- Expected Optimization Time
- 🗕 Local vs. Global Analysis 🧹
- Conclusions