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Before we start: A Word on “Global”

Global can have many different meanings.

We use it in the sense of global in time.

Why?

Because it is shorter than
concerned with a substantial part of a run and not only with a very limited number of steps.

Nothing else is intended.
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Convergence — What is Convergence?

“Convergence” as known from analysis not sufficient.

(Xn) sequence of random variables
L random variable

When do we say that (Xn) converges to L?

(Xn) converges almost surely to L

:⇔ Prob
(

lim
n→∞

|Xn − L| = 0
)

= 1

Other definitions of convergence known.
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Convergence — What is Convergence to an f -Value?

Consider any evolutionary algorithm.
Ft: best function value in the t-th generation

(Ft) is sequence of random variables

constant c is (degenerated) random variable

Thus: We can ask whether (Ft) converges to c.
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Convergence — What is Gene Convergence?

Consider EA with population size µ > 1
and binary representation with length n.

∀i ∈ {1, . . . , n} : B
(i)
t :=

(

µ
∑

j=1

x
(i)
t [j]

)

/µ

average bit value at position i in generation t

(B
(i)
t ) is random variable.

We say the i-th bit converges if (B
(i)
t ) converges

almost surely to 0 or 1.
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Convergence — What is Gene Convergence?

We say the population converges if all bits
converge.

Caution: Often:
“i-th bit is converged” if B

(i)
t ∈ {0, 1} for some t.

“population is converged” if this holds for all B
(i)
t .

In GAs mutation sometimes considered not important.

Crossover cannot change anything on converged bits.
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Convergence — What is Premature Convergence?

Gene Convergence

Without

Convergence to an Optimal Function Value

is called

Premature Convergence.
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Convergence — Is a GA a Function Optimizer?

An algorithm is called a function optimizer
if it optimizes any function with probability 1.

Is a GA a function optimizer?

That depends on the GA.

The “canonical GA” is not a function optimizer.

The “canonical GA” maintaining the best solution

found is a function optimizer.
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Conditions for Convergence (I)

Consider generational GA with population size µ,
binary representation, string length n, crossover,
mutation, and selection.
Model as Markov chain:

population plus “best-so-far” is state

size of state space: 2(µ+1)·n

model crossover, mutation, selection as
matrices C, M , S

get transition matrix as C · M · S
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Conditions for Convergence (II)

Some definitions: Markov chain with transition
matrix P

For states i, j we say i → j if there exists
m ∈ N such that Pm[i, j] > 0.

A state i is essential, if for all states j we have
(i → j) ⇒ (j → i).

P is irreducible if ∀ states i, j we have i → j.

P is diagonal-positive if all diagonal elements
are positive.
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Conditions for Convergence (III)

Results:

P = CMS irreducible and diag.-positive ⇒
state i sub-optimal ⇔ i not essential

P = CMS with C, M, S diag.-positive and M
irreducible ⇒ Markov chain converges to
global optimum

In simple words:

If a GA keeps track of “best-so-far” and each
state is reachable via a sequence of generations,
then the GA is a function optimizer.
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What is Expected Optimization Time?

Consider EA maximizing some function f .

Let T denote the number of steps (function
evaluations) before some x with
f(x) = max{f(y)} belongs to the current
population for the first time.

E (T ) is called the expected optimization time.
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Why should we care?

Suppose you want to do optimization.

Is Convergence to an Optimal f -Value an Issue?

Perhaps in theory, but not in practice.

Crucial: When is optimization efficient?

Thus, expected optimization time is most

important measure.
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Methodology

Consider simplified algorithms.

Consider simplified example problems.

Give bounds for expected optimization time or
similar measures.

Analyze these bounds for growing dimension
of the search space.

Do not use unproven assumptions or further
simplifications.
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The (1+1) EA

Maximize f : {0, 1}n → R.

1. Initialization
Choose x ∈ {0, 1}n uniformly at random.

2. Mutation
Create y ∈ {0, 1}n by bit-wise mutation of x
with mutation probability 1/n.

3. Selection
If f(y) ≥ f(x), replace x by y.

4. Continue at 2.
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Proof Methods

f -based partitions: simple, intuitive,
sometimes surprisingly powerful

typical run: generalization of f -based
partitions

expected advance: powerful method for lower
bounds

potential method: powerful, not very intuitive,
difficult to use
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Method: f -based Partitions (I)

P1, P2, . . . , Pl partition of search space {0, 1}n

with

∀i ∈ {1, . . . , l} : Pi 6= ∅
Pl = {x ∈ {0, 1}n | f(x) = max {f(y) | y ∈ {0, 1}n}}
∀i ∈ {1, . . . , l − 1}, x ∈ Pi, y ∈ Pi+1 : f(x) < f(y)

sx,y :=

(

1

n

)H(x,y)

·
(

1 − 1

n

)n−H(x,y)
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Method: f -based Partitions (II)

Upper bound: si := min

{

∑

y∈Pj ,j>i

sx,y | x ∈ Pi

}

E (T ) ≤
l−1
∑

i=1

1
si

Lower bound: Si := max

{

∑

y∈Pj ,j>i

sx,y | x ∈ Pi

}

E (T ) ≥ max
{

|Pi|
2n · 1

Si
| 1 ≤ i < l

}
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Method: f -based Partitions (III)

Example: Upper bound for JUMPm, m ∈ {1, . . . , n}

JUMPm(x) :=

{

m + |x| if (|x| ≤ n − m) ∨ (|x| = n)

n − |x| otherwise

with |x| = ONEMAX(x)

JUMP(x)

|x|n − m n

m
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Method: f -based Partitions (IV)

i ∈ {1, . . . , n} : Pi := {x ∈ {0, 1}n | JUMPm(x) = i}
Pn+1 := {1n}

i /∈ {n − m, n} : si ≥
(

n−i
1

)

1
n

(

1 − 1
n

)n−1 ≥ n−i
en

sn−m ≥
(

1
n

)m (
1 − 1

n

)n−m ≥ 1
enm

E (T ) ≤ enm +
n
∑

i=1

en
n−i = O(nm + n log n)
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Method: Typical Run (I)

Describe a “typical run” in phases by

partition P1, . . . , Pl

upper and lower bounds t1, . . . , tl, T1, . . . , Tl

Find upper bounds on failure probabilities p1, . . . , pl.

Prob
(

T ≤
l
∑

i=1

ti

)

≤
l
∑

i=1

pi Prob
(

T ≥
l
∑

i=1

Ti

)

≤
l
∑

i=1

pi

E (T ) ≥
(

1 −
l
∑

i=1

pi

)

·
l
∑

i=1

ti
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Method: Typical Run (II)

Example: Upper bound for Real Royal Road
Function R for one-point crossover

Rm(x) :=











2n2 if x = 1n

n|x| + b(x) if |x| ≤ n − m

0 otherwise

where |x| = ONEMAX(x) and
b(x) = length of longest block of 1-bits in x
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Method: Typical Run (III)

1. Initialization
Choose pop. of size µ uniformly at random.

2. Crossover
With prob. pc create z by one-point crossover,
otherwise choose z from population.

3. Mutation
Create z′ by bit-wise mutation of z.

4. Selection
Add z′ to the population. Remove one
member with minimal f -value and maximal
number of copies.

5. Continue at 2.
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Method: Typical Run (IV)

Theorem: For pc ≤ 1 − ε (ε > 0 constant),
m ≤ dn/3e, µ ≥ m + 1:
E (T ) = O

(

n2µm + n2 log n + nµ log µ + µ2/pc

)

For pc constant, µ = O(n): E (T ) = O
(

n3 · µ
)

Proof Method: Variant of “Typical Run”
Describe typical run with 5 phases.
Find upper bound on expected length for each phase.
Get result by addition.
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Method: Typical Run (V)

Phase 1

Assumption: after random initialization
Goal: There is a member of the population with
at most n − m ones or exactly n ones.

Expected Length s(n) + o(1)
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Method: Typical Run (VI)

Phase 2

Assumption: Phase 1 finished
Goal: All members of the population have exactly
n − m ones or optimum found.

Expected Length O(n2 · µ/m)

Proof: Prob (increase number of 1-bits) = Ω
(

m
en

)

“Global” Analyses 08/01/02 28/56



Method: Typical Run (VII)

Phase 3

Assumption: Phase 2 finished
Goal: All members of the population have exactly
n − m ones and these ones in one block, or
optimum found.

Expected Length: O(n2 log n + nµ log µ)

Proof: Case 1: All members have b(x) = i.
Then 2-bit mutation needed. Prob. for such
mutation ≥ (n − m − i)/(en2); sum O(n2 log n)

Case 2: ∃x with b(x) = i and j > 0 have larger b-values
Sufficient: Choose one of the j and don’t change it.
Prob. for this event Ω(µ/j); sum O(nµ log µ).
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Method: Typical Run (VIII)

Phase 4

Assumption: Phase 3 finished
Goal: all possible x with |x| = n − m and
b(x) = n − m in population, or optimum found

Expected Length: O(n2µm)
Proof: essential: µ ≥ m + 1 =#different such strings
2-bit-mutation sufficient, Prob. = Ω(1/n2)
Prob. choose appropriate parent ≥ 1/µ
m such events sufficient
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Method: Typical Run (IX)

Phase 5

Assumption: Phase 4 finished
Goal: find optimum

Expected Length: O(µ2/pc)
Proof:
Prob (choose 1n−m0m and 0m1n−m for crossover) ≥
pc/µ

2

Prob (choose crossover position “in the middle”) ≥
1/3

�
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Method: Expected Advance (I)

Define measure of advance F (f -value,
Hamming distance, . . . )
Ft: advance after t steps

E (T ) ≥ t · Prob (T ≥ t)

= t · Prob (Ft ≤ ∆)

= t · (1 − Prob (Ft > ∆))

Markov: Prob (Ft > ∆) ≤ E (Ft) /∆

E (T ) ≥ t ·
(

1 − E(Ft)
∆

)
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Method: Expected Advance (II)

Example: Lower bound for long-path function

Definition: n ≥ 1, k > 1, (n − 1)/k ∈ N

long k-path of dimension 1: P k
1 := (0, 1)

long k-path of dimension n − k:
P k

n−k = (v1, . . . , vl)
long k-path of dimension n:
P k

n := (0kv1, 0
kv2, . . . , 0

kvl,

0k−11vl, 0
k−212vl, . . . , 01k−1vl, 1

kvl,
1kvl−1, 1

kv1)
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Method: Expected Advance (III)

Path Properties:
P k

n contains (k + 1)2(n−1)/k − k + 1 different points.

∀i ∈ {1, . . . , k − 1} :
x with at least i successors on path:
i-th successor has Hamming distance i and all
other points have different Hamming distances

Definition: PATHk(x) :=










n2 + l if x is l-th point of P k
n

n2 − n
k
∑

i=1

xi −
n
∑

i=k+1

xi if x /∈ P k
n
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Method: Expected Advance (IV)

Theorem: (1 + 1) EA on PATH√
n−1

E (T ) = Ω
(

n3/2 · 2
√

n
)

Proof Method:
Prob (first path point not after “bridge”) ≥ 1

2

Give lower bound on expected optimization time
when first point is not after the “bridge” with
method of expected advance.
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Method: Expected Advance (V)

Ti: optimization time when started in i-th path
point
Et: “in t steps no mutation of ≥

√
n − 1 bits”

Prob (Et) ≥ 1 − t · n−
√

n−1
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Method: Expected Advance (V)

Ti: optimization time when started in i-th path
point
Et: “in t steps no mutation of ≥

√
n − 1 bits”

Prob (Et) ≥ 1 − t · n−
√

n−1
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Method: Expected Advance (VI)

d: distance between starting point and optimum
aj: distance between current point and starting
point after j generations

E (Ti) ≥ Prob (Et) · E (Ti | Et)

≥ Prob (Et) · t · Prob (at < d | Et)

= Prob (Et) · t · (1 − Prob (at ≥ d|Et))

Markov:

E (Ti) ≥ Prob (Et) · t ·
(

1 − E (at | Et)

d

)
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Method: Expected Advance (VII)

Due to Path Property:
E (at | Et) ≤ t · E (a1 | Et)

E (Ti) ≥ t · Prob (Et) ·
(

1 − t · E (a1 | Et)

d

)
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Method: Expected Advance (VIII)

E (a1 | Et) =

√
n−1−1
∑

i=1

i · Prob (a1 = i)

≤
√

n−1−1
∑

i=1

i

ni
<

∞
∑

i=1

i

ni

=
∞
∑

i=1

∞
∑

j=i

1

nj
=

n

(n − 1)2
≤ 2

n

Plugging in with t = n3/2 · 2
√

n−5 yields result.
�

“Global” Analyses 08/01/02 39/56



Method: Expected Advance (VIII)

E (a1 | Et) =

√
n−1−1
∑

i=1

i · Prob (a1 = i)

≤
√

n−1−1
∑

i=1

i

ni
<

∞
∑

i=1

i

ni

=
∞
∑

i=1

∞
∑

j=i

1

nj
=

n

(n − 1)2
≤ 2

n

Plugging in with t = n3/2 · 2
√

n−5 yields result.
�

“Global” Analyses 08/01/02 39/56



Method: Potential Method (I)

Define potential function Φ: {0, 1}n → R with

{x ∈ {0, 1}n | Φ(x) = max {Φ(y) | y ∈ {0, 1}n}}
⊇
⊆ {x′ ∈ {0, 1}n | f(x′) = max {f(y′) | y′ ∈ {0, 1}n}}

Analyze EA on Φ but with acceptance given by f .
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Method: Potential Method (II)

Example: linear functions
Obvious: Suffices to analyze linear functions with
positive weights.

Φ(x) :=
n/2
∑

i=1

xi +
n
∑

i=(n/2)+1

xi

generation “successful” ⇔ child accepted and
different from parent
Find upper bound for number of successful
generations until Φ(x) grows.
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Local Performance Measures

Local performance measures are often easier
to estimate.

Often they come with the promise of “global”
predictions via repetition.

They seem to allow easy comparisons in
special cases.
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Local Performance Measures

Quality Gain:
Q(1+1) EA

f (x) = E (f(x′) − f(x))

x current string, x′ next current string

Progress Rate:
r(1+1) EA
f (x) = E (H (x, xopt) − H (x′, xopt))

x current string, x′ next current string

Obvious: “bigger is better”
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(Counter-)Example Function

SPC(x) :=











2n if x = 1n

n if x = 1i0n−i, 0 ≤ i < n

n − ONEMAX(x) otherwise

0n

1n

1i0n−i
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The (1+1)∗EA

Maximize f : {0, 1}n → R.

1. Initialization
Choose x ∈ {0, 1}n uniformly at random.

2. Mutation
Create y ∈ {0, 1}n by bit-wise mutation of x
with mutation probability 1/n.

3. Selection
If f(y)>f(x), replace x by y.

4. Continue at 2.
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Optimization of SPC

(1+1) EA:
E (T ) = O

(

n3
)

success probability in n4 generations ≥ 1 − e−Ω(n)

(1+1)∗EA:
E (T ) = nΩ(n)

success probability in nn/2 generations ≤ e−Ω(n)
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Quality Gain on SPC

Q(1+1)∗EA
SPC (x) =

∑

x′∈{0,1}n

SPC(x′)>SPC(x)

sx,x′ · (SPC(x′) − SPC(x))

Q(1+1) EA
SPC (x) =

∑

x′∈{0,1}n

SPC(x′)≥SPC(x)

sx,x′ · (SPC(x′) − SPC(x))

=
∑

x′∈{0,1}n

SPC(x′)>SPC(x)

sx,x′ · (SPC(x′) − SPC(x))

⇒ ∀x ∈ {0, 1}n : Q(1+1)∗EA
SPC (x) = Q(1+1) EA

SPC (x)
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Progress Rate on SPC (I)

For all points not on the plateau:

(1+1) EA and (1+1)∗EA accept the same strings.

⇒ progress rates equal

On the plateau:

(1+1)∗EA only accepts direct jump to 1n.

(1+1) EA accepts any step on the plateau.
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Progress Rate on SPC (II)

On the plateau:

r(1+1)∗EA
SPC

(

1i0n−i
)

= s1i0n−i,1n · H
(

1i0n−i, 1n
)

=

(

1

n

)n−i

·
(

1 − 1

n

)i

· (n − i)

≤ n − i

nn−i
∈
{

1

n
,

2

n2
, . . . ,

n

nn

}
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Progress Rate on SPC (III)

On the plateau:

r(1+1) EA
SPC

(

1i0n−i
)

=
n
∑

j=0

s1i0n−i,1j0n−j · (j − i)
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Progress Rate on SPC (III)

On the plateau:

r(1+1) EA
SPC

(

1i0n−i
)

=
n
∑

j=0

s1i0n−i,1j0n−j · (j − i)

number of 1-bits

ni i + 1 i + 2i − 1i − 20
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Progress Rate on SPC (III)

On the plateau:

r(1+1) EA
SPC

(

1i0n−i
)

=
n
∑

j=0

s1i0n−i,1j0n−j · (j − i)

number of 1-bits

ni i + 1 i + 2i − 1i − 20

+1
+2

+(n − i)

−1
−2

−i
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Progress Rate on SPC (IV)

On the plateau:

In the half far from 1n (i < n/2):
r(1+1) EA

SPC

(

1i0n−i
)

> 0

only slightly larger then for the (1+1)∗EA

In the half near to 1n (i > n/2):
r(1+1) EA

SPC

(

1i0n−i
)

< 0

clearly smaller then for the (1+1)∗EA

Even more misleading then quality gain.
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√
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Overview

Convergence
√

Expected Optimization Time
√

Local vs. Global Analysis
√

Conclusions
Summary
“Take Home Message”
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Conclusions — Summary

most EAs converge to global optimum

expected optimization time is important
measure

different proof methods and analytical tools
available

stronger methods for populations and
crossover needed

local measures can be very misleading
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Conclusions — Take Home Message

Ask yourself what you are really interested in.

EAs can be analyzed like randomized
algorithms.

Keep your algorithm and your problem as
simple as possible.

Try to solve challenging problems.

Be realistic about what you can do.

Remember: Proofs are nice, even in
application oriented work.
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Overview

Convergence
√

Expected Optimization Time
√

Local vs. Global Analysis
√

Conclusions
√
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