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Introduction to Vose's Dynamical Systems Model

SGA as a Dynamical 
System

What is a dynamical system?

→ a set of possible states, together 
with a rule that determines the 
present state in terms of past 
states.

When a dynamical system is 
deterministic?

→ If the present state can be 
determined uniquely from the 
past states (no randomness is 
allowed).



08/29
Summer Lecture Series 

2002 9

Introduction to Vose's Dynamical Systems Model

SGA as a Dynamical 
System

1. SGA usually starts with a random 
population. 

2. One generation later we will 
have a new population. 

3. Because the genetic operators 
have a random element, we 
cannot say exactly what the next 
population will be (algorithm is 
not deterministic!!!).
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Introduction to Vose's Dynamical Systems Model

SGA as a Dynamical 
System
However, we can calculate:
→ the probability distribution over 

the set of possible populations 
defined by the genetic 
operators

→ expected next population

As the population size tends to 
infinity:

→ the probability that the next 
population will be the expected 
one tends to 1 (algorithm 
becomes deterministic) 

→ and the trajectory of expected 
next population gives the actual 
behavior.
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations

Let Z represent a search space 
containing s elements, 
Z = {z0,z1,…,zs-1}

Example:
Search space of fixed-length binary 
strings of length l=2. Then,

z0=00 z1=01   z2=10 z3=11

The size of the search space is given 
by s=2l
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations

Population p is a point in the space of 
all possible populations.

We can represent a population p by 
considering the number of copies ak of 
each element zk that p contains as a 
fraction of the total population size r, 
that is: 

This gives us a vector p=(p0,p1,…ps-1)

r
a

p k
k =
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations

Example cont. (l=2):
Suppose that a population 

consists of:
{00,00,01,10,10,10,10,10,11,11}

Then r =10 and 
p=(0.2,0.1,0.5,0.2)



08/29
Summer Lecture Series 

2002 14

Introduction to Vose's Dynamical Systems Model

Representing 
Populations
Properties of population vectors:

1. p is an element of the vector 
space Rs (addition and/or 
multiplication by scalar produce 
other vectors within Rs)

2. Each entry pk must lie in the 
range [0,1]

3. All entries of p sum to 1

The set of all vectors in Rs that 
satisfy these properties is called 
the simplex and denoted by Λ.
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations
Examples of Simplex Structures:
1. The simplest case:

Search space has only two 
elements
Z = {z0,z1}

Population vectors are contained in 
R2

Simplex Λ is a segment of a 
straight line:
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations

2. Search space Z has 3 
elements, Z={z0,z1,z2}
Simplex Λ is now a triangle
with vertices at (1,0,0), 
(0,1,0), (0,0,1).
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations

In general, in s dimensional 
space the simplex forms (s-1)-
dimensional object (a hyper-
tetrahedron).
The vertices of the simplex 
correspond to populations with 
copies of only one element.
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Introduction to Vose's Dynamical Systems Model

Representing 
Populations

Properties of the Simplex:
→ Set of possible populations of a 

given size r takes up a finite
subset of the simplex.

→ Thus, the simplex contains 
some vectors that could never 
be real populations because 
they have irrational entries.

→ But, as the population size r
tends to infinity, the set of 
possible populations becomes 
dense in the simplex.
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Introduction to Vose's Dynamical Systems Model

Random Heuristic 
Search
Algorithm is defined by a 

“heuristic function” 

G(x)=Λ→Λ

1. Let x be a random population 
of size r

2. y <- 0 ∈ Rs

3. FOR i from 1 to r DO
4. Choose k from the 

probability 
distribution G (x)

5. y <- y + 1/r⋅ek (add k to 
population y)

6. ENDFOR
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Introduction to Vose's Dynamical Systems Model

Interpretations of G(x)

1. G(x) is the expected next 
generation population

2. G(x) is the limiting next 
population as the population size 
goes to infinity

3. G(x)j is the probability that j∈Z
is selected to be in the next 
generation
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Introduction to Vose's Dynamical Systems Model

Properties of G(x)

G(x) = U(C(F(x))), where F 
describes selection, U describes 

mutation, and C describes 
recombination.

x ->G(x) is a discrete-time 
dynamical system
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Introduction to Vose's Dynamical Systems Model

Simple Genetic 
Algorithm

1. Let X be a random population of size 
r.

2. To generate a new population Y do 
the following r times:
- choose two parents from X with 
probability in proportion to fitness
- apply crossover to parents to obtain 
a child individual 
- apply mutation to the child
- add the child to new population y

3. Replace X by Y
4. Go to step 2.



08/29
Summer Lecture Series 

2002 23

Introduction to Vose's Dynamical Systems Model

Modeling Proportional 
Selection

Let p=(p0,p1,…ps-1) be our 
current population.
We want to calculate the 
probability that zk will be 
selected for the next 
population.
Using fitness proportional 
selection, we know this 
probability is equal to:

)(
)(
pf

pzf kk ⋅
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Introduction to Vose's Dynamical Systems Model

Modeling Proportional 
Selection

The average fitness of the 
population p can be calculated 
by:

We can create a new vector q, 
where qk equals the probability 
that zk is selected.
We can think of q as a result of 
applying an operator F to p, 
that is q = F p

∑
−

=

⋅=
1

0

)()(
s

k
kk pzfpf
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Introduction to Vose's Dynamical Systems Model

Modeling Proportional 
Selection

Let S be a diagonal matrix S
such that:

Sk,k=f(zk)

Then we can use the following 
concise formula for q:

q = F p= Sp
pf

⋅
)(

1
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Introduction to Vose's Dynamical Systems Model

Modeling Proportional 
Selection

Probabilities in q define the 
probability distribution for the 
next population, if only 
selection is applied.

This distribution specified by 
the probabilities q0,…,qs-1 is a 
multinomial distribution.
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Introduction to Vose's Dynamical Systems Model

Modeling Proportional 
Selection

Example:
Let Z={0,1,2}
Let f=(3,1,5)T

Let p=(¼ ,½ ,¼ )T

f(p)=3⋅¼+1⋅½+5⋅¼= 5/2

q = F p=

G
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Introduction to Vose's Dynamical Systems Model

Modeling Proportional 
Selection

If there is a unique element zk of 
maximum fitness in population p, 
then the sequence p, F(p), F(F(p)), 
…converges to the population 
consisting only of zk, which is the 
unit vector ek in Rs.

Thus, repeated application of 
selection operator F will lead the 
sequence to a fixed-point which is 
a population consisting only of 
copies of the element with the 
highest fitness from the initial 
population.
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Defining Mixing Matrices

What is Mixing?

Obtaining child z from parents 
x and y via the process of 
mutation and crossover is 
called mixing and has 
probability denoted by mx,y(z).
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Defining Mixing Matrices

Modeling Mutation
We want to know the probability 
that after mutating individuals that 
have been selected, we end up 
with a particular individual.

There are two ways to obtain 
copies of zi after mutation:
- other individual zj is selected and 
mutated to 

produce zi

- zi is selected itself and not 
mutated
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Defining Mixing Matrices

Modeling Mutation

The probability of ending up with zi
after selection and mutation is:

where Ui,j is the probability that zj
mutates to form zi

Example:
The probability of mutating z5=101 
to z0=000 is equal to:
U0,5=µ2(1- µ)

j

s

j
ji qU∑

−

=

1

0
,
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Defining Mixing Matrices

Modeling Mutation

We can put all the Ui,j
probabilities in the matrix U.  
For example, in case of l=2 we 
obtain:
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Defining Mixing Matrices

Modeling Mutation

If p is a population, then (Up)j
is the probability that individual 
j results from applying only 
mutation to p.

With a positive mutation rate 
less than 1, the sequence p, 
U(x), U(U(x)), … converges to 
the population with all 
elements of Z represented 
equally (the center of the 
simplex).
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Defining Mixing Matrices

Modeling Mutation

The probability of ending up 
with zi after applying mutation 
and selection can be 
represented as the one time-
step equation:
p(t+1)=U é F p(t)=

1
( )

( )
U Sp t

f p
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Defining Mixing Matrices

Modeling Mutation

Will this sequence converge as time 
goes to infinity?
This sequence will converge to a 
fixed-point p satisfying:
U S p = f(p) p
This equation states that the fixed-
point population p is an eigenvector
of the matrix U S and that the 
average fitness of p is the 
corresponding eigenvalue.
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Defining Mixing Matrices

Modeling Mutation

Perron-Frobenius Theorem 
(for matrices with positive real 
entries)

From this theorem we know 
that U S will have exactly one 
eigenvector in the simplex, and 
that this eigenvector 
corresponds to the leading 
eigenvalue (the one with the 
largest absolute value).
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Defining Mixing Matrices

Modeling Mutation
Summarizing, for SGA under 

proportional selection and 
bitwise mutation:

1. Fixed-points are eigenvectors of 
US, once they have been scaled 
so that their components sum to 
1.

2. Eigenvalues of US give the 
average fitness of the 
corresponding fixed-point 
populations.

3. Exactly one eigenvector of US is 
in the simplex Λ.

4. This eigenvector corresponds to 
the leading eigenvalue.
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Defining Mixing Matrices

Modeling 
Recombination

Effects of applying crossover 
can be represented as an 
operator C acting upon 
simplex Λ.

(C p)k gives the probability of 
producing individual zk in the 
next generation by applying 
crossover.
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Defining Mixing Matrices

Modeling 
Recombination

Let ⊕ denote bitwise mod 2 addition 
(XOR)

Let ⊗ denote bitwise mod 2 
multiplication (AND).

If m∈Z , let m denote the ones 
complement of m.

Example:
Parent 1: 01010010101 = zi

Parent 2: 11001001110 = zj

Mask: 11111100000 = m
Child: 01010001110 = zk
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Defining Mixing Matrices

Modeling 
Recombination

zk = (zi ⊗ m) ⊕ (zj ⊗ m)
Let r(i,j,k) denote the 
probability of recombining i
and j and obtaining k.
Let C0 be a s×s matrix defined 
by:
Ci,j=r(i,j,0)
Let σk be the permutation 
matrix so that
σk ei=ei⊕k where ei is the i-th
unit vector
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Defining Mixing Matrices

Modeling 
Recombination

Define C: Λ→ Λ by

C(p) = (σk p)TC0(σk p)

Then C defines the effect of 
recombination on a population 
p.
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Defining Mixing Matrices

Modeling 
Recombination

Example (from Wright):
l=2 binary strings
String   Fitness
00 3
01 1
10 2
11 4
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Defining Mixing Matrices

Modeling 
Recombination

Assume an initial population 
vector of p=(¼, ¼, ¼, ¼)T

q= F(p)= 

Assume one-point crossover with 
crossover rate of ½ 

C0 =
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Defining Mixing Matrices

Modeling 
Recombination

For example, the third 
component of C(q) is 
computed by:

C(q)2=
pT σ2

T C0 σ2 p
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Defining Mixing Matrices

Modeling 
Recombination

Similarly we can calculate 
other components and finally 
obtain:

C(q) = 
Now after applying mutation 
operator with mutation rate of 
1/8 and we get:
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Defining Mixing Matrices

Properties of Mixing

For all the usual kinds of 
crossover that are used in GAs, 
the order of crossover and 
mutation doesn’t matter.

U é C = C é U
The probability of creating a 
particular individual is the 
same.
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Defining Mixing Matrices

Properties of Mixing

This combination of crossover and 
mutation (in either order) gives 
the mixing scheme for the GA, 
denoted by M.

M = U é C = C é U

The k-th component of M p is:

M(p)k= C(U p)k=(U p)T·(Ck U p)



08/29
Summer Lecture Series 

2002 49

Defining Mixing Matrices

Properties of Mixing

Let us define Mk=U Ck U
The (i,j)th entry of Mk is the 
probability that zi and zj, after being 
mutated and recombined, produce zk.
Then the mixing scheme is given by:

M(p)k= pT·(Mk p)= (σk p)T·(M0 σk p)
All the information about mutating 
and recombining is held in the matrix 
M0 called the mixing matrix.
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Finite Populations

Fixed-Points

If the population size r is finite, 
then each component pi of a 
population vector p must be a 
rational number with r as a 
denominator.

The set of possible finite 
populations of size r forms a 
discrete lattice within the 
simplex Λ.
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Finite Populations

Fixed-Points

Consequence:
Fixed-point population 

described by the infinite 
population model might not 
actually exist as a possible 

population!!!
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Finite Populations

Markov Chain

Given an actual (finite) 
population represented by the 
vector p(t), we have a 
probability distribution over all 
possible next populations 
defined by G(p)=p(t+1).

The probability of getting a 
particular population depends 
only on the previous 
generation → Markov Chain.
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Finite Populations

Markov Chain

A Markov Chain is described by 
its transition matrix Q.

Qq,p is the probability of going 
from population p to 
population q.

∏
−

=

=
1

0
, )!(

))((
!

s

j j

rq
j

pq rq

pG
rQ

j
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Finite Populations

Markov Chain

→ p(t+1) itself might not be an 
actual population

→ p(t+1) is the expected next 
population

→ Can think of the probability 
distribution clustered around
that population

→ Populations that are close to it 
in the simplex will be more 
likely to occur as a next 
population than the ones that 
are far away
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Finite Populations

Markov Chain

→ A good way to visualize this is 
to think of the operator G as 
defining an arrow at each point 
in the simplex

→ At a fixed-point of G, the arrow 
has 0 length

→ Thus, SGA is likely to spend 
much of its time at populations 
that are in the vicinity of the 
infinite population fixed-point
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Finite Populations

Metastable States

Metastable states are parts of 
the simplex where the force of 
G is small, even if these areas 
are not near the fixed-point.

They are important in 
understanding the long-term 
behavior of a finite population
GA.
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Finite Populations

Metastable States

We extend G to apply to the whole 
of Rs.

Perron-Frobenius theory predicts 
only one fixed-point in the simplex, 
but we are now considering the 
action of G on the whole of Rs.

If there are other fixed-point close 
to the simplex, then by continuity 
of G, there will be a metastable
region in that part of the simplex.
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Finite Populations

Metastable States

Metastable states are simply 
other eigenvectors of U S 
suitably scaled so that their 
components sum to one.

To find potential metastable
states within the simplex, we 
simply calculate all the 
eigenvectors of US
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Conclusions

Properties and 
Conjectures of G(x)

The principle conjecture:
G is focused under reasonable 
assumptions about crossover 
and mutation

→ Known to be true if mutation is 
defined bitwise with a mutation 
rate <0.5 and there is no 
crossover.

→ When there is crossover it is 
known to be true when the 
fitness function is linear (or 
near to linear) and the mutation 
rate is small.
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Conclusions

Properties and 
Conjectures of G(x)

The second conjecture:
Fixed points of G are hyperbolic
for nearly all fitness functions

→ Important for determining the 
stability of fixed points

→ Known to be true for the case of 
fixed-length binary strings, 
proportional selection, any kind 
of crossover, and mutation 
defined bitwise with a positive 
mutation rate
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Conclusions

Properties and 
Conjectures of G (x)

The third conjecture:
G is well-behaved

→ Known to be true if the 
mutation rate is positive but 
< 0.5 and if crossover is 
applied at a rate that is less 
than 1.
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Conclusions

Properties and 
Conjectures of G(x)

Assuming all three conjectures 
are true, then the following 
properties follow:

1. There are only finitely many 
fixed-points of G.

2. The probability of picking a 
population p, such that iterates 
of G applied to p converge on 
an unstable fixed-point in zero.

3. The infinite population GA 
converges to a fixed-point in 
logarithmic time.



08/29
Summer Lecture Series 

2002 65

Conclusions

Summary

Michael Vose’s theory of the SGA:
→ Gives a general mathematical 

framework for the analysis of 
the SGA

→ Uses dynamical systems models 
to predict the actual behavior 
(trajectory) of the SGA

→ Provides results that are 
general in nature, but also 
applicable to real situations

→ Lays some theoretical 
foundations toward building the 
GA theory
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Conclusions

Summary

But…
→ Is intractable in all except 

for the simple cases
→ Approximations are 

necessary to the Vose SGA 
model to make it tractable 
in real situations
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