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Topics

• What are landscapes?
• Why talk about them?

– To try to answer: “What makes search 
hard/easy?”

• Landscape characterizations



What are landscapes?

• Controversial issue 
• Historical perspective 

– Landscapes in other fields
• Biology (Wright’s “surfaces of selective value” → “fitness landscapes”)

– Lack of rigorous definition

• Physics & Chemistry
– Some formal definitions
– Highly customized for specific problems of interest

– Landscapes in Computer Science - EC



Landscapes in EC
• Two main views

– Search space + fitness function ( + neighborhood ?)
– Search space + fitness function + operator (T. Jones)

• Search space can be:
– Set of solutions (phenotypes / genotypes)
– Set of sets of solutions (phenotypes / genotypes) i.e. 

populations (M. Vose)
• One problem – multiple choices of what the 

search space is and/or what the fitness function is
– Is a problem hard/easy to solve? →
– Is a landscape hard/easy to search? →
– What landscape to construct for a problem to make it 

easy to solve?
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Harder to visualize for multiple dimensions!

… + neighborhood



… + neighborhood
- assume maximization & discrete search space -

• Plateau: a set of points (at least 2) that is the transitive 
closure of the neighbor-of-equal-fitness relation

• Peak region: a point or plateau whose fitness is strictly 
greater than that of all of its neighbors (the neighbors of a plateau = 
the reunion of the neighbors of the points of the plateau that are not already on the plateau)

• Peak: peak region made of just one point
• Global maximum: peak region of maximum fitness
• Local maxima: peak region that is not a global maxima
• Ridges, Valleys, Hills – intuitive but harder to define 

formally

• Different neighborhoods can be defined on the same 
space – structure changes (peaks, plateaus, etc.)



Landscape = Space + Fitness + 
Operator
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1-point operators



Landscape = Space + Fitness + 
Operator

multiple-point 
operators

Jones PhD 1995



Landscape = Space + Fitness + 
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Topics

• What are landscapes?
• Why talk about them?
• Landscape characterizations



Why Study Landscapes?

• Descriptive purposes
– Understand what makes search hard/easy

• Prescriptive purposes
– Make predictions
– Design better algorithms



Topics

• What are landscapes?
• Why talk about them?
• Landscape characterizations



Studying Landscapes

• Approaches:
– Introducing/identifying properties (concepts)
– Introducing techniques/measures for 

analyzing such properties
– Constructing landscapes with desired 

properties
– Assessing the relevance of the properties with 

respect to the “hardness” of landscapes
– Assessing the relevance of various 

landscape-characterizing techniques with 
respect to certain properties



Studying Landscapes

Properties (Concepts) Techniques (Metrics)

Problem hardness (GA Hardness)

Goals:

• acquire understanding
• making predictions
• making better EA design choices

Method types:

• qualitative
• quantitative



Properties (Concepts)

• Ruggedness/Modality
• Deception
• Epistasis



Ruggedness/Modality

• Uni-modal landscape: a single peak (peak-
region)

• Multi-modal: multiple peaks
• High modality: many peaks
• Rugged ≈ highly modal? Not really, 

ruggedness is a more complex (and vague 
) concept

– Modality can be quantified
– How to quantify ruggedness??



Ruggedness/Modality

• Hypothesis: uni-modal / not rugged is easy
False! Uni-modal can be hard.
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Search space

Needle in a haystack Long path problem

Easier for GA than for hill-climbing, but 
hard for GA too
Horn & Goldberg 1995

Search needs a gradient



Ruggedness/Modality

• Hypothesis: highly-modal (rugged) is hard
False! Highly multimodal can be easy.

Maximally multimodal problem

Half the points in the space are local 
optima, yet the problem is easy for GA

Horn & Goldberg 1995



Ruggedness/Modality

• What lies between the extremes??

Ideas:
• Structured ruggedness vs. “random” 

ruggedness (noise)?



Properties (Concepts)

• Ruggedness/Modality
• Deception
• Epistasis



Deception

• Some “fit” low order hyperplanes of the search 
space “guide” the search toward some solution 
or building block that is not globally competitive

• Fitness of a hyperplane = average of fitnesses of 
the individuals in the hyperplane

• Fully deceptive
f(0**)>f(1**) f(00*)>f(11*),f(01*),f(10*) f(000) = 28  f(001) = 26
f(*0*)>f(*1*) f(0*0)>f(1*1),f(0*1),f(1*0) f(010) = 22  f(100) = 14
f(**))>f(**1) f(*00)>f(*11),f(*01),f(*10) f(110) = 0    f(011) = 0
f(111)>f(000),f(001),f(010),f(011),f(100),f(101),f(110) f(101) = 0    f(111) = 30

• Minimally deceptive, consistently deceptive …

Goldberg 1987



Deception

• Two extremes
– The only challenging problems for GAs are 

deceptive Whitley 1991

– Deception is neither necessary nor sufficient 
for GA-hardness Grefenstette 1992



Deception

• Two extremes
– The only challenging problems for GAs are 

deceptive Whitley 1991

– Deception is neither necessary nor sufficient 
for GA-hardness Grefenstette 1992



Deception
• Work on deception is based on the             

Static Building Block Hypothesis:               
“Given any short, low-order hyperplane partition, 
a GA is expected to converge to the hyperplane 
with the best static average fitness.”

• The hypothesis ignores the distinction (made by 
the Schema Theorem) between observed and 
static fitness of a hyperplane.

Grefenstette 1992



Deception
• Some deceptive problems are GA-easy

• The optimum is (0,1).
• Encoded on 20 bits, the problem has a fully 

deceptive sub-problem of order 10: (1,#)
• The problem is easily solved by a standard GA.
• Why? Collateral convergence. The last 10 bits 

converge first and alter the observed fitness of 
the 00..0 schema for the first 10 bits.

Grefenstette 1992
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Deception

• Some problems with no deception are GA-hard.

• Any hyperplane H that contains the optimum, 0, 
has f(H)>2. Any hyperplane H that does not 
contain 0 has f(H)≤1. → no deception

• Needle in a hay stack problem, hard for GAs.
• Why? Because of high variance in the fitnesses 

of the hyperplanes associated with the optimum. 
Observed average never reflects static average.
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Properties (Concepts)

• Ruggedness/Modality
• Deception
• Epistasis



Epistasis
• At a high level: epistasis – the degree of 

interdependence among genes (with respect to 
their contribution to fitness).

• How to quantify it?
– Obvious for some problems (e.g. NK-, SAT-

landscapes)
– Harder to generalize

• Polygeny: the number of genes that influence 
one particular trait

• Pleitropy: the number of traits influenced by a 
particular gene

• Constant across genes/traits or variable



Epistasis and GA hardness

• No epistasis should be easy – Separable 
functions – Line search

• How much epistasis for a landscape to 
become hard?

• Which operators are more suitable for 
various degrees of epistasis?
– As epistasis increases, the relative advantage 

of crossover over mutation is reduced, but still 
at high levels De Jong, Potter, Spears 1997



Quantifying Epistasis

• Davidor 1991 – a mathematical formula for 
epistasis
– Requires full knowledge of the domain
– Not quite clear (to me) why the formula should 

reflect epistasis
– High variance if formulas are computed over 

samples (opposite results can be obtained)
– Support of relationship between epistasis 

value and GA hardness in the paper is week



Properties (Concepts)

• Ruggedness/Modality
• Deception
• Epistasis



Studying Landscapes

Properties (Concepts) Techniques (Metrics)

Problem hardness (GA Hardness)

Goals:

• acquire understanding
• making predictions
• making better EA design choices

Method types:

• qualitative
• quantitative



Techniques/Measures

• Fitness-distance relationship
• Auto-correlation & correlation length
• Operator fitness correlation



Fitness-Distance Relationship
• Intuition based on parallel between EAs and general 

search techniques (e.g. A*)
– Fitness function ↔ Heuristic function
– Heuristics try to approximate distance from current point to goal

• Hypothesis: good correlation between fitness and 
distance (to global optima) should make search 
amenable

• Quantitative: computing actual correlation figure 
(standard formula from statistics)
– Not always good to summarize the relationship between fitness 

and distance
• Qualitative: fitness vs. distance scatter plots

– Can reveal structure of the landscape



Fitness-Distance Relationship

• Assessing the FD relationship can be used 
to predict problem hardness

• Not infallible
• Not generally applicable



FDC by examples

• Confirmation of intuitive results
• Explanation of unintuitive results
• Make comparisons (e.g. among representations)



FDC by examples

• Classify easy as easy, hard as hard

Jones PhD 1995



FDC by examples

• Classify easy as easy, hard as hard

Jones PhD 1995

– Multiple copies of the same sub-problem don’t make the 
problem harder

– Separate problem difficulty from algorithm resources



FDC by examples

• Classify easy as easy, hard as hard

Jones PhD 1995



FDC by examples

• Classify easy as easy, hard as hard

Jones PhD 1995

High modality can be easy



FDC by examples

• Classify easy as easy, hard as hard
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FDC by examples

• Classify easy as easy, hard as hard

Jones PhD 1995

rpath = -0.39
rnon-path = -0.67



FDC by examples

• Classify easy as hard

Jones PhD 1995

High fit points at all distances from the 
optimum, a GA is expected to have no 
problems locating one

Correct that Gray encoding is easier 
for GA on this problem.

FD relation reflects that representation makes a difference



FDC by examples

• Classify easy as hard

Jones PhD 1995

Correctly shows that problem is hard Problem is easy because one of the 
substructures has FDC ≈ -1

FD relation reflects that encoding makes a difference



FDC by examples

• Classify hard as easy?
– Can happen when FD relation is determined based 

on sampling and important points are missed

Jones PhD 1995



Issues with FD relation
• Knows nothing about GAs – good or bad?

– Indicator of how difficult a problem should be (i.e. general hardness 
rather than GA hardness

– FDC = -0.5 but GA does poorly → probably something wrong with the 
GA

• Requires a distance measure – what makes a good distance?
– Define distance based on the operators intended for use (i.e. tell it 

something about GAs) – loose generality
• Says something about problems for which solutions are already 

known
– Extend it by determining (local) optima based on a few hill-climbing runs 

and computing distance from those
• Sampling can miss important points and give misleading conclusions

– Can we really use it to make predictions about real world problems??
• Information on small examples of problems does not necessarily 

generalize to larger instances



Techniques/Measures

• Fitness-distance relationship
• Auto-correlation & correlation length
• Operator fitness correlation



Auto-correlation and 
correlation length

• Auto-correlation: for each distance h, how correlated are the fitnesses 
of the points which are separated by that distance h from each other
– Roughly corresponds to the distance one can jump and still have some 

information about the fitness there given the fitness here
– Computed usually using pairs of points on some random walk through the 

space

• Correlation length τ: the distance h for which the auto-correlation is ½
• Distance is defined in terms of number of steps taken by some 

operator → function of the landscape under that operator
• Assumptions: landscape is isotropic (statistics of a random walk do not 

depend on the particular random walk used)
– Is it really applicable in real world problems?

Manderick, Weger & Spiessens 1991



Auto-correlation and 
correlation length

• τ ≈ exploratory horizon beyond which genetic 
search degrades to random search
– τ is small → decrease rates of mutation & crossover

• Relationship between τ and EA performance

The relation between the correlation length τ of an NK-landscape and the number of 
improvements Imp found by GENITOR during runs of 2048 generations. The 
dimension of the landscapes is N = 96 and the degree of epistatic interaction K takes 
values  K = 0,1, 2, 4, 8, 16, 32, 48, 95. The results are averaged over 5 runs.

5.25.43.806.208.6011.6015.2016.0019.80Imp.
0.521.001.723.907.0614.1519.5124.3729.96τ

9548321684210K

Manderick, Weger & Spiessens 1991



Techniques/Measures

• Fitness-distance relationship
• Auto-correlation & correlation length
• Operator fitness correlation



Operator fitness correlation

• Correlation between fitness of parents and 
fitness of children

• Same isotropy assumption must hold.
• Results on NK landscapes

mutation 1-point crossover
Manderick, Weger & Spiessens 1991



Operator fitness correlation

• Results on TSP
ρOX = 0.72 ρReverse = 0.86
ρPMX = 0.61 ρRemove-and-Reinsert = 0.80
ρCX = 0.57 ρSwap = 0.77
ρEX = 0.90
• Hypothesis: high correlation means high EA 

performance
• Empirical results seem to support hypothesis, 

however, only 5 runs were performed

Manderick, Weger & Spiessens 1991



Operator fitness correlation
• Predictive models using operator fitness correlation

• Try to fit a linear model to the dependency between the 
fitness of the parents and the fitness of the children

• Static estimation vs. dynamic estimation
– Dynamic estimates have a lot more variance

• Crossover: less linear & more variance

• Linearity and variance also depend on the problem and 
the operator rates

Grefenstette 1995



Operator fitness correlation

Grefenstette 1995
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Operator fitness correlation

Grefenstette 1995

CROSSOVER



Operator fitness correlation
• Iterate the model to predict change in average fitness of 

the population over time

Grefenstette 1995

• As average fitness rises over time, smaller 
improvements  result from same amount of variation
– Scale fitness for average fitness to increase faster

Computations can get 
nasty when extending the 
methodology to more 
types of EAs
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Studying Landscapes

Properties (Concepts) Techniques (Metrics)

Problem hardness (GA Hardness)

Goals:

• acquire understanding
• making predictions
• making better EA design choices

Method types:

• qualitative
• quantitative



Topics

• What are landscapes?
• Why talk about them?
• Landscape characterizations



Conclusions

• No single perfect way to look at the big picture
• Must consider all angles collectively to get the 

view
• Must extend work from analyzing hand-crafted, 

well known problems to real-world, unknown 
ones

• Identify additional, more relevant properties of 
landscapes to be used for problem-to-EA 
matching


