Understanding Landscapes

Elena Popovici

Topics

What are landscapes?

 \Diamond

- Why talk about them?
 - To try to answer: "What makes search hard/easy?"
- Landscape characterizations

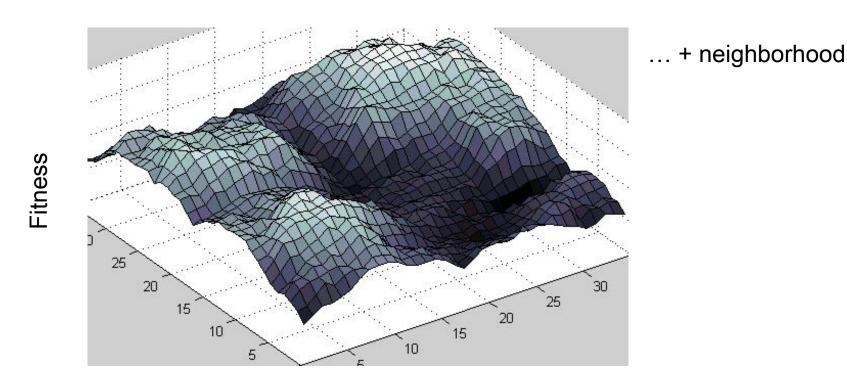
What are landscapes?

- Controversial issue
- Historical perspective
 - Landscapes in other fields
 - Biology (Wright's "surfaces of selective value" → "fitness landscapes")
 - Lack of rigorous definition
 - Physics & Chemistry
 - Some formal definitions
 - Highly customized for specific problems of interest
 - Landscapes in Computer Science EC

Landscapes in EC

- Two main views
 - Search space + fitness function (+ neighborhood ?)
 - Search space + fitness function + operator (T. Jones)
- Search space can be:
 - Set of solutions (phenotypes / genotypes)
 - Set of sets of solutions (phenotypes / genotypes) i.e. populations (M. Vose)
- One problem multiple choices of what the search space is and/or what the fitness function is
 - Is a problem hard/easy to solve? →
 - Is a landscape hard/easy to search? →
 - What landscape to construct for a problem to make it easy to solve?

Landscape = Space + Fitness

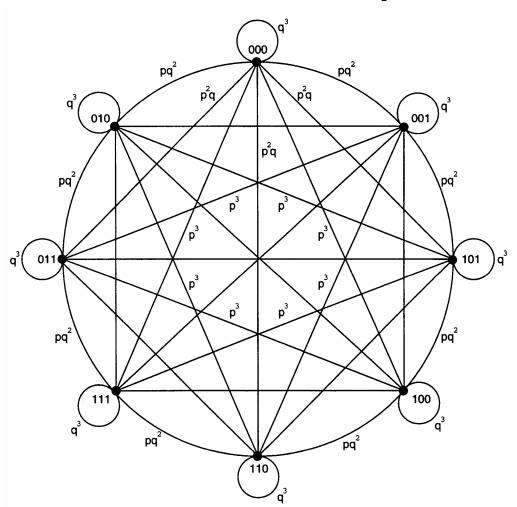


Harder to visualize for multiple dimensions!

... + neighborhood

- assume maximization & discrete search space -
- Plateau: a set of points (at least 2) that is the transitive closure of the neighbor-of-equal-fitness relation
- Peak region: a point or plateau whose fitness is strictly greater than that of all of its neighbors (the neighbors of a plateau = the reunion of the neighbors of the points of the plateau that are not already on the plateau)
- Peak: peak region made of just one point
- Global maximum: peak region of maximum fitness
- Local maxima: peak region that is not a global maxima
- Ridges, Valleys, Hills intuitive but harder to define formally
- Different neighborhoods can be defined on the same space – structure changes (peaks, plateaus, etc.)

Landscape = Space + Fitness + Operator



1-point operators

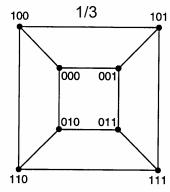


Figure 2. The landscape for the bit-flipping operator (β) on binary strings of length three. Edges are bidirectional and each has probability one-third.

Figure 3. The mutation landscape for binary strings of length three. The mutation probability is p, and q = 1 - p. Some edge probabilities are omitted. Edges are bidirectional.

Landscape = Space + Fitness + Operator

multiple-point operators

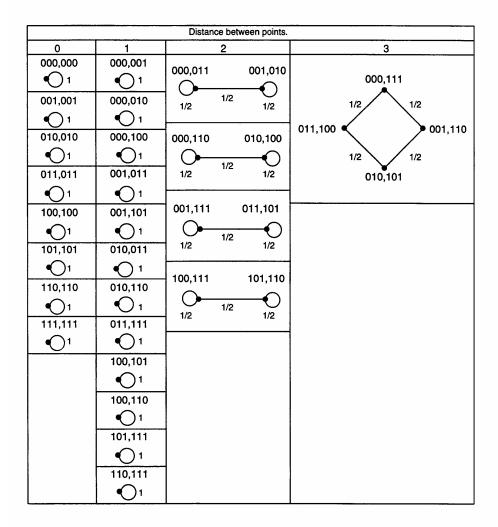
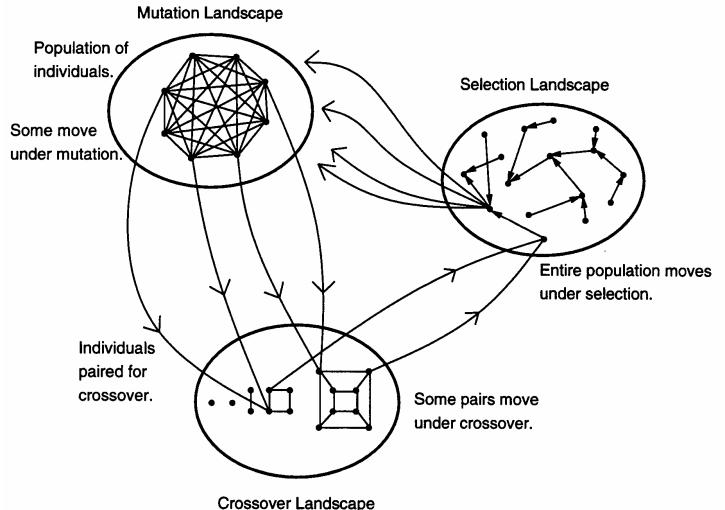


Figure 4. The one-point crossover landscape for binary strings of length three. The crossover operator, $\chi_1^{2\to2}$, produces two offspring from two parents. Edges are bidirectional.

Landscape = Space + Fitness + Operator



Topics

- What are landscapes?
- Why talk about them?
- Landscape characterizations

Why Study Landscapes?

- Descriptive purposes
 - Understand what makes search hard/easy
- Prescriptive purposes
 - Make predictions
 - Design better algorithms

Topics

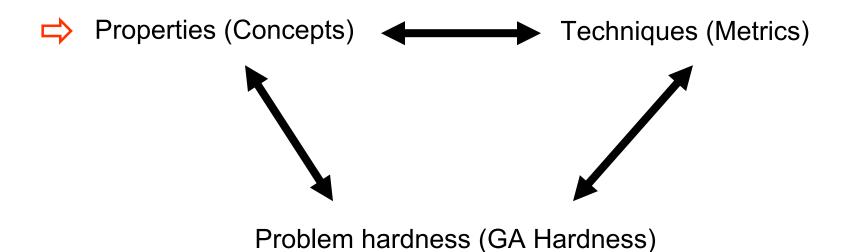
- What are landscapes?
- Why talk about them?
- Landscape characterizations

Studying Landscapes

Approaches:

- Introducing/identifying properties (concepts)
- Introducing techniques/measures for analyzing such properties
- Constructing landscapes with desired properties
- Assessing the relevance of the properties with respect to the "hardness" of landscapes
- Assessing the relevance of various landscape-characterizing techniques with respect to certain properties

Studying Landscapes



Goals:

- acquire understanding
- making predictions
- making better EA design choices

Method types:

- qualitative
- quantitative

Properties (Concepts)

Ruggedness/Modality

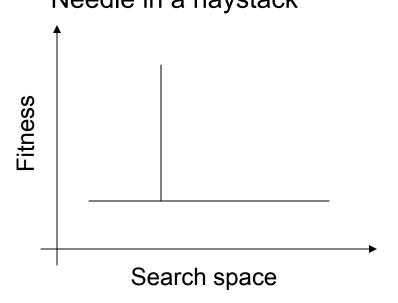
- Deception
- Epistasis

- Uni-modal landscape: a single peak (peakregion)
- Multi-modal: multiple peaks
- High modality: many peaks
- Rugged ≈ highly modal? Not really, ruggedness is a more complex (and vague
 ○) concept
 - Modality can be quantified
 - How to quantify ruggedness??

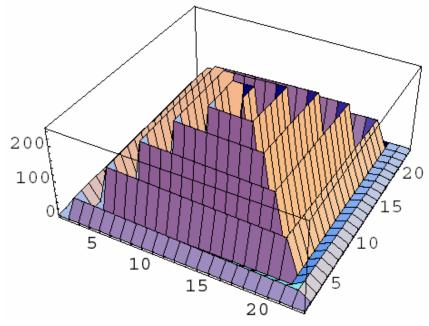
Hypothesis: uni-modal / not rugged is easy

False! Uni-modal can be hard.

Needle in a haystack Long path problem



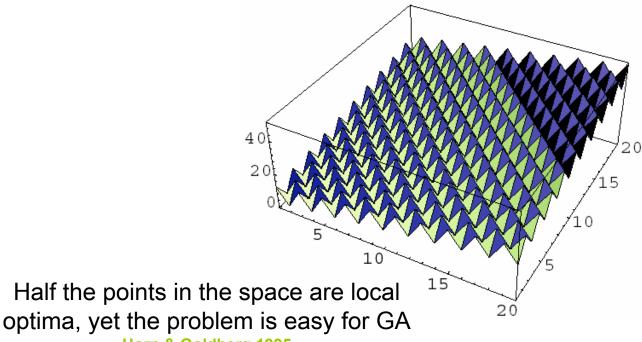
Search needs a gradient



Easier for GA than for hill-climbing, but hard for GA too
Horn & Goldberg 1995

 Hypothesis: highly-modal (rugged) is hard False! Highly multimodal can be easy.

Maximally multimodal problem



Horn & Goldberg 1995

What lies between the extremes??

Ideas:

 Structured ruggedness vs. "random" ruggedness (noise)?

Properties (Concepts)

Ruggedness/Modality

1

Deception

Epistasis

- Some "fit" low order hyperplanes of the search space "guide" the search toward some solution or building block that is not globally competitive
- Fitness of a hyperplane = average of fitnesses of the individuals in the hyperplane
- Fully deceptive

Goldberg 1987

```
\begin{array}{lll} f(0^{**}) > f(1^{**}) & f(00^{*}) > f(11^{*}), f(01^{*}), f(10^{*}) & f(000) = 28 & f(001) = 26 \\ f(^{*}0^{*}) > f(^{*}1^{*}) & f(0^{*}0) > f(1^{*}1), f(0^{*}1), f(1^{*}0) & f(010) = 22 & f(100) = 14 \\ f(^{**})) > f(^{**}1) & f(^{*}00) > f(^{*}11), f(^{*}01), f(^{*}10) & f(110) = 0 & f(011) = 0 \\ f(111) > f(000), f(001), f(010), f(011), f(100), f(101), f(110) & f(101) = 0 & f(111) = 30 \\ \end{array}
```

Minimally deceptive, consistently deceptive ...

- Two extremes
 - The only challenging problems for GAs are deceptive whitley 1991
 - Deception is neither necessary nor sufficient for GA-hardness Grefenstette 1992

- Two extremes
 - The only challenging problems for GAs are deceptive whitley 1991
- Deception is neither necessary nor sufficient for GA-hardness Grefenstette 1992

- Work on deception is based on the
 Static Building Block Hypothesis:
 "Given any short, low-order hyperplane partition, a GA is expected to converge to the hyperplane with the best static average fitness."
- The hypothesis ignores the distinction (made by the Schema Theorem) between observed and static fitness of a hyperplane.

Some deceptive problems are GA-easy

$$\max f(x_1 2, x_2), 0 \le x_i \le 1$$

$$f(x_1, x_2) = \begin{cases} x_1^2 + 10x_2^2, x_2 < 0.995 \\ 2(1 - x_1)^2 + 10x_2^2, x_2 \ge 0.995 \end{cases}$$

- The optimum is (0,1).
- Encoded on 20 bits, the problem has a fully deceptive sub-problem of order 10: (1,#)
- The problem is easily solved by a standard GA.
- Why? Collateral convergence. The last 10 bits converge first and alter the observed fitness of the 00..0 schema for the first 10 bits.

Some problems with no deception are GA-hard.

$$x \in [0,1], f(x) = \begin{cases} 2^{L+1}, x = 0\\ x^2, otherwise \end{cases}, L = \#bits$$

- Any hyperplane H that contains the optimum, 0, has f(H)>2. Any hyperplane H that does not contain 0 has f(H)≤1. → no deception
- Needle in a hay stack problem, hard for GAs.
- Why? Because of high variance in the fitnesses of the hyperplanes associated with the optimum.
 Observed average never reflects static average.

Properties (Concepts)

- Ruggedness/Modality
- Deception
- Epistasis

Epistasis

- At a high level: epistasis the degree of interdependence among genes (with respect to their contribution to fitness).
- How to quantify it?
 - Obvious for some problems (e.g. NK-, SATlandscapes)
 - Harder to generalize
- Polygeny: the number of genes that influence one particular trait
- Pleitropy: the number of traits influenced by a particular gene
- Constant across genes/traits or variable

Epistasis and GA hardness

- No epistasis should be easy Separable functions – Line search
- How much epistasis for a landscape to become hard?
- Which operators are more suitable for various degrees of epistasis?
 - As epistasis increases, the relative advantage of crossover over mutation is reduced, but still at high levels De Jong, Potter, Spears 1997

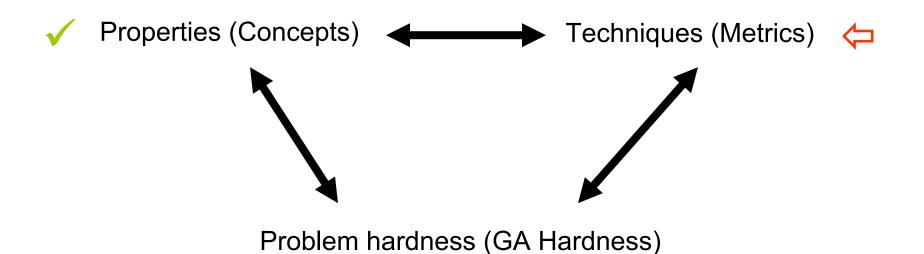
Quantifying Epistasis

- Davidor 1991 a mathematical formula for epistasis
 - Requires full knowledge of the domain
 - Not quite clear (to me) why the formula should reflect epistasis
 - High variance if formulas are computed over samples (opposite results can be obtained)
 - Support of relationship between epistasis
 value and GA hardness in the paper is week

Properties (Concepts)

- Ruggedness/Modality
- Deception
- Epistasis

Studying Landscapes



Goals:

- acquire understanding
- making predictions
- making better EA design choices

Method types:

- qualitative
- quantitative

Techniques/Measures

Fitness-distance relationship

- Auto-correlation & correlation length
- Operator fitness correlation

Fitness-Distance Relationship

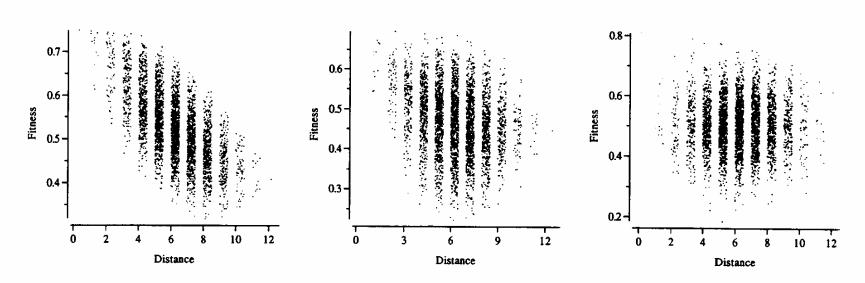
- Intuition based on parallel between EAs and general search techniques (e.g. A*)
 - Fitness function ↔ Heuristic function
 - Heuristics try to approximate distance from current point to goal
- Hypothesis: good correlation between fitness and distance (to global optima) should make search amenable
- Quantitative: computing actual correlation figure (standard formula from statistics)
 - Not always good to summarize the relationship between fitness and distance
- Qualitative: fitness vs. distance scatter plots
 - Can reveal structure of the landscape

Fitness-Distance Relationship

- Assessing the FD relationship can be used to predict problem hardness
- Not infallible
- Not generally applicable

FDC by examples

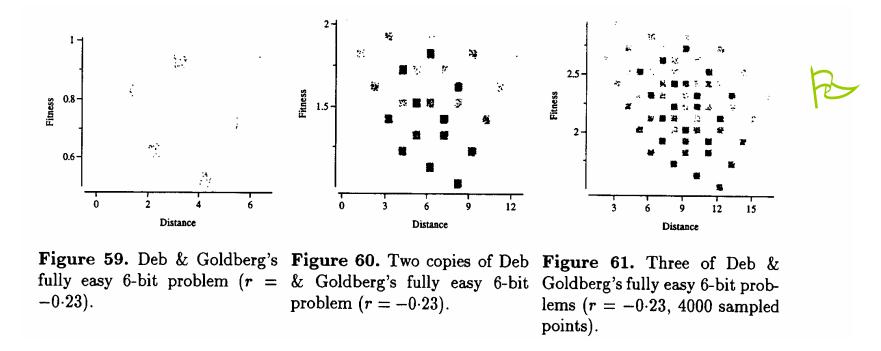
- Confirmation of intuitive results
- Explanation of unintuitive results
- Make comparisons (e.g. among representations)



with N=12 and K=1 (r= with N=12 and K=3 (r= with N=12 and K=11 (r=-0.64).

Figure 56. An NK landscape Figure 57. An NK landscape Figure 58. An NK landscape -0.25).

-0.01).



- Multiple copies of the same sub-problem don't make the problem harder
- Separate problem difficulty from algorithm resources

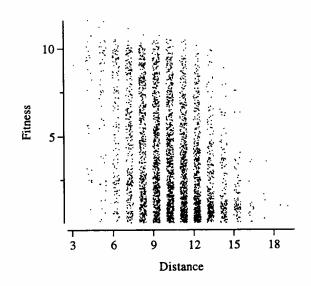


Figure 62. Grefenstette's deceptive but easy 20-bit problem (r = -0.32, 4000 sampled points).

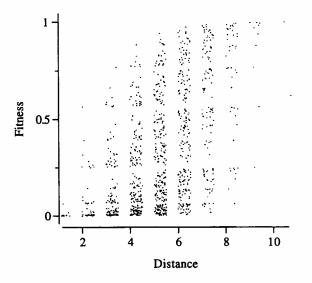


Figure 63. Grefenstette's non-deceptive but hard 10-bit problem. The single point with fitness 2048 is omitted from the plot. When included, r = -0.09, when excluded, r = 0.53).

Classify easy as easy, hard as hard

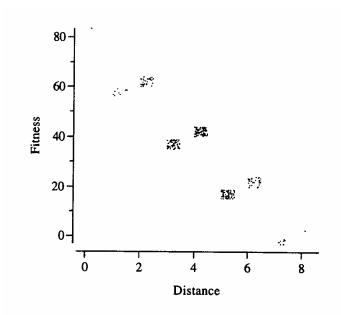


Figure 64. Ackley's porcupine problem on 8 bits (r = -0.88).

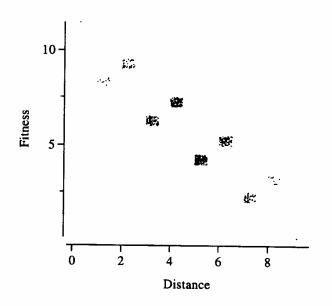


Figure 65. Horn & Goldberg's maximum modality problem on 9 bits (r = -0.83).

High modality can be easy

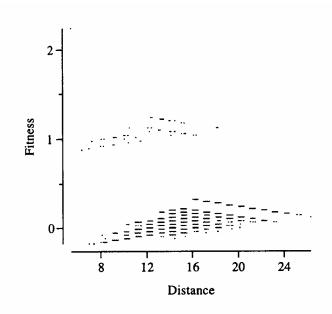


Figure 80. Holland's royal road on 32 bits (b = 8, k = 2 and g = 0), (r = 0.25, 4000 sampled points).

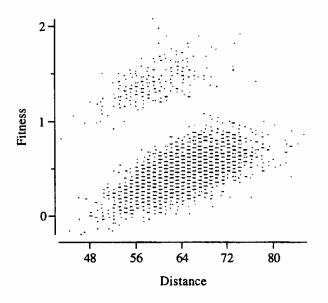


Figure 81. Holland's royal road on 128 bits (b = 8, k = 4 and g = 0), (r = 0.27, 4000 sampled points).

Classify easy as easy, hard as hard

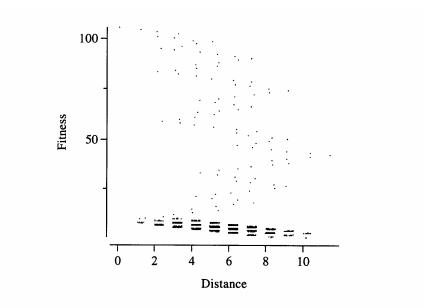
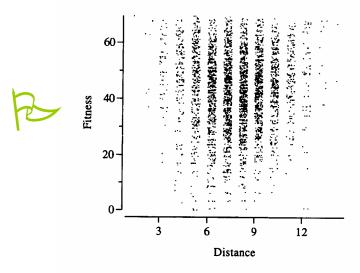


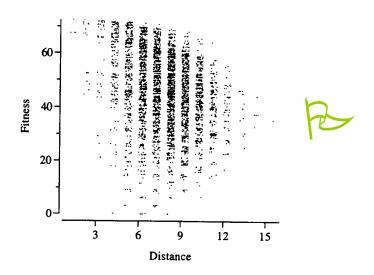
Figure 82. Horn, Goldberg & Deb's long path problem with 11 bits (r = -0.12). Notice the path.

$$r_{path} = -0.39$$

 $r_{non-path} = -0.67$

Classify easy as hard





H

Figure 86. De Jong's F1 binary coded with 15 bits converted to a maximization problem (r = -0.01, 4000 sampled points).

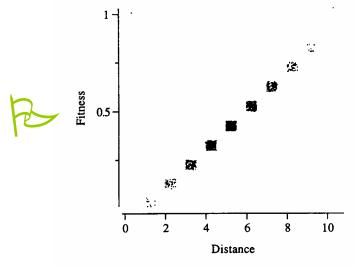
Figure 87. De Jong's F1 Gray coded with 15 bits (r = -0.30, 4000 sampled points).

High fit points at all distances from the optimum, a GA is expected to have no problems locating one

Correct that Gray encoding is easier for GA on this problem.

FD relation reflects that representation makes a difference

Classify easy as hard



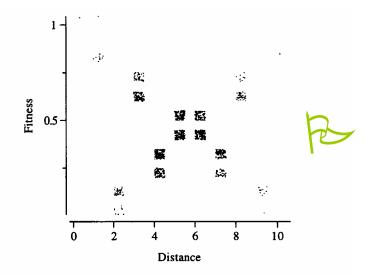


Figure 105. Liepins and Vose's fully deceptive problem on 10 bits (r = 0.98).

Figure 106. The transform of Liepins and Vose's fully deceptive problem on 10 bits (r = -0.02). Correlation cannot detect the X structure.

Correctly shows that problem is hard

Problem is easy because one of the substructures has FDC \approx -1

FD relation reflects that encoding makes a difference

- Classify hard as easy?
 - Can happen when FD relation is determined based on sampling and important points are missed

Issues with FD relation

- Knows nothing about GAs good or bad?
 - Indicator of how difficult a problem should be (i.e. general hardness rather than GA hardness
 - FDC = -0.5 but GA does poorly → probably something wrong with the GA
- Requires a distance measure what makes a good distance?
 - Define distance based on the operators intended for use (i.e. tell it something about GAs) – loose generality
- Says something about problems for which solutions are already known
 - Extend it by determining (local) optima based on a few hill-climbing runs and computing distance from those
 - Sampling can miss important points and give misleading conclusions
 - Can we really use it to make predictions about real world problems??
- Information on small examples of problems does not necessarily generalize to larger instances

Techniques/Measures

Fitness-distance relationship

- **1**
- Auto-correlation & correlation length
- Operator fitness correlation

Auto-correlation and correlation length

- Auto-correlation: for each distance *h*, how correlated are the fitnesses of the points which are separated by that distance *h* from each other
 - Roughly corresponds to the distance one can jump and still have some information about the fitness there given the fitness here
 - Computed usually using pairs of points on some random walk through the space
- Correlation length τ : the distance h for which the auto-correlation is $\frac{1}{2}$
- Distance is defined in terms of number of steps taken by some operator → function of the landscape under that operator
- Assumptions: landscape is isotropic (statistics of a random walk do not depend on the particular random walk used)
 - Is it really applicable in real world problems?

Auto-correlation and correlation length

- τ ≈ exploratory horizon beyond which genetic search degrades to random search
 - $-\tau$ is small \rightarrow decrease rates of mutation & crossover
- Relationship between τ and EA performance

K	0	1	2	4	8	16	32	48	95
τ	29.96	24.37	19.51	14.15	7.06	3.90	1.72	1.00	0.52
Imp.	19.80	16.00	15.20	11.60	8.60	6.20	3.80	5.4	5.2

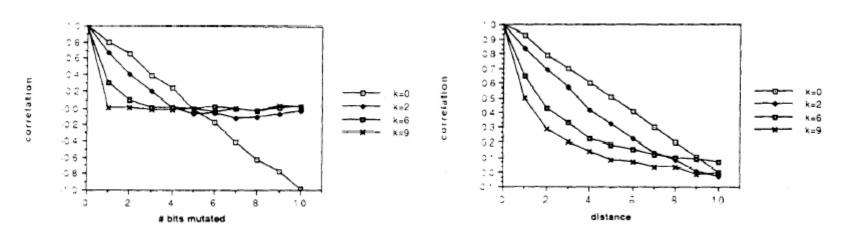
The relation between the correlation length τ of an NK-landscape and the number of improvements *Imp* found by GENITOR during runs of 2048 generations. The dimension of the landscapes is N = 96 and the degree of epistatic interaction K takes values K = 0,1, 2, 4, 8, 16, 32, 48, 95. The results are averaged over 5 runs.

Techniques/Measures

Fitness-distance relationship

- Auto-correlation & correlation length
- Operator fitness correlation

- Correlation between fitness of parents and fitness of children
- Same isotropy assumption must hold.
- Results on NK landscapes



mutation

1-point crossover

Results on TSP

$$ho_{OX} = 0.72$$
 $ho_{Reverse} = 0.86$
 $ho_{PMX} = 0.61$ $ho_{Remove-and-Reinsert} = 0.80$
 $ho_{CX} = 0.57$ $ho_{Swap} = 0.77$
 $ho_{EX} = 0.90$

- Hypothesis: high correlation means high EA performance
- Empirical results seem to support hypothesis, however, only 5 runs were performed

- Predictive models using operator fitness correlation
- Try to fit a linear model to the dependency between the fitness of the parents and the fitness of the children
- Static estimation vs. dynamic estimation
 - Dynamic estimates have a lot more variance
- Crossover: less linear & more variance
- Linearity and variance also depend on the problem and the operator rates

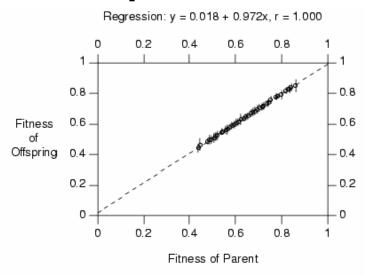


Figure 2: Static Estimates for Mutation (0.01) on f_1

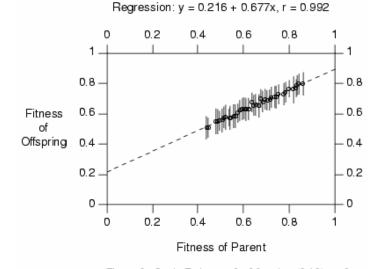


Figure 3: Static Estimates for Mutation (0.10) on f_1

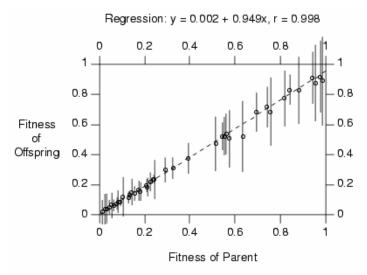


Figure 6: Static Estimates for Mutation (0.01) on f_5

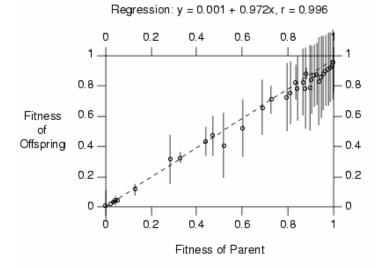


Figure 7: Dynamic Estimates for Mutation (0.01) on f_5

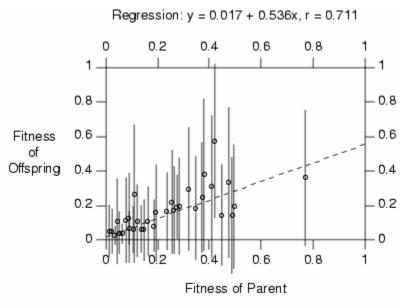


Figure 10: Static Estimates for 2pt on f5

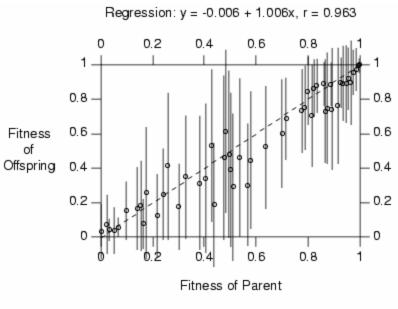
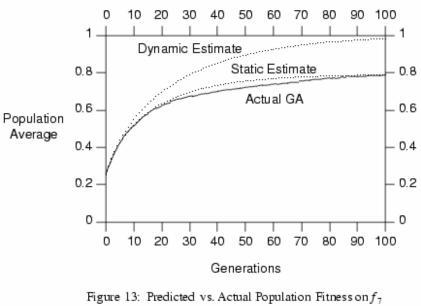


Figure 11: Dynamic Estimates for 2pt on f_5

CROSSOVER

Iterate the model to predict change in average fitness of the population over time

Computations can get nasty when extending the methodology to more types of EAs

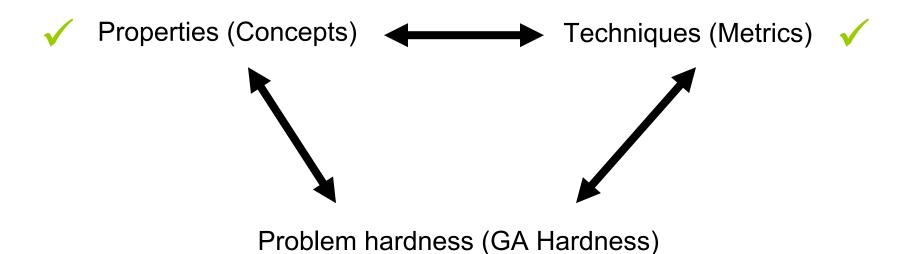


- As average fitness rises over time, smaller improvements result from same amount of variation
 - Scale fitness for average fitness to increase faster

Techniques/Measures

- Fitness-distance relationship
- Auto-correlation & correlation length
- Operator fitness correlation

Studying Landscapes



Goals:

- acquire understanding
- making predictions
- making better EA design choices

Method types:

- qualitative
- quantitative

Topics

- What are landscapes?
- Why talk about them?
- Landscape characterizations

Conclusions

- No single perfect way to look at the big picture
- Must consider all angles collectively to get the view
- Must extend work from analyzing hand-crafted, well known problems to real-world, unknown ones
- Identify additional, more relevant properties of landscapes to be used for problem-to-EA matching