Understanding Landscapes
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Topics

* \What are landscapes?

« Why talk about them?

— To try to answer: “What makes search
hard/easy?”

* Landscape characterizations



What are landscapes?

 Controversial issue

* Historical perspective
— Landscapes in other fields

¢ BIO|Ogy (Wright's “surfaces of selective value” — “fithess landscapes”)
— Lack of rigorous definition

* Physics & Chemistry
— Some formal definitions
— Highly customized for specific problems of interest

— Landscapes in Computer Science - EC



Landscapes in EC

 TwO main views

— Search space + fitness function ( + neighborhood ?)
— Search space + fitness function + operator (T. Jones)

e Search space can be:
— Set of solutions (phenotypes / genotypes)

— Set of sets of solutions (phenotypes / genotypes) i.e.
populations (M. Vose)

* One problem — multiple choices of what the
search space is and/or what the fitness function is

— |s a problem hard/easy to solve? —
— |Is a landscape hard/easy to search? —

— What landscape to construct for a problem to make it
easy to solve?



Landscape = Space + Fitness

... + neighborhood

Fitness

=

Harder to visualize for multiple dimensions!



.. + neighborhood

- assume maximization & discrete search space -

Plateau: a set of points (at least 2) that is the transitive
closure of the neighbor-of-equal-fitness relation

Peak region: a point or plateau whose fitness is strictly
greater than that of all of its neighbors (the neighbors of a plateau =

e reunion of the neighbors of the points of the plateau that are not already on the plateau)

Peak: peak region made of just one point
Global maximum: peak region of maximum fitness
Local maxima: peak region that is not a global maxima

Ridges, Valleys, Hills — intuitive but harder to define
formally

Different neighborhoods can be defined on the same
space — structure changes (peaks, plateaus, etc.)



Landscape = Space + Fithess +
Operator
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Figure 3. The mutation landscape for binary strings of length three. The mutation
probability is p, and ¢ = 1 — p. Some edge probabilities are omitted. Edges are
bidirectional.



Landscape = Space + Fithess +
Operator

Distance between points.
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Figure 4. The one-point crossover landscape for binary strings of length three. The
crossover operator, X?‘*"’, produces two offspring from two parents. Edges are bidi-
rectional.



Landscape = Space + Fitness +
Operator

Mutation Landscape

Population of

individuals. Selection Landscape

Some move
under mutation.

NS

Entire population moves
under selection.

Individuals
paired for

crossover. Some pairs move

under crossover.

Crossover Landscape



Topics

* \What are landscapes?
« Why talk about them?
» Landscape characterizations



Why Study Landscapes”?

* Descriptive purposes
— Understand what makes search hard/easy

* Prescriptive purposes
— Make predictions
— Design better algorithms



Topics

* \What are landscapes?
« Why talk about them?
» Landscape characterizations



Studying Landscapes

* Approaches:
— Introducing/identifying properties (concepts)

— Introducing techniques/measures for
analyzing such properties

— Constructing landscapes with desired
properties

— Assessing the relevance of the properties with
respect to the “hardness” of landscapes

— Assessing the relevance of various
landscape-characterizing techniques with
respect to certain properties



Studying Landscapes

—> Properties (Concepts) ) Techniques (Metrics)

\

Problem hardness (GA Hardness)

Goals: Method types:
e acquire understanding e qualitative
» making predictions e quantitative

* making better EA design choices



Properties (Concepts)

* Ruggedness/Modality
* Deception
* Epistasis



Ruggedness/Modality

Uni-modal landscape: a single peak (peak-
region)

Multi-modal: multiple peaks

High modality: many peaks

Rugged = highly modal”? Not really,
ruggedness is a more complex (and vague
®) concept

— Modality can be quantified

— How to quantify ruggedness??




Ruggedness/Modality

* Hypothesis: uni-modal / not rugged is easy

False! Uni-modal can be hard.
Needle in a haystack Long path problem

Fithess

Search space

Search needs a gradient

hard for GA too



Ruggedness/Modality

« Hypothesis: highly-modal (rugged) is hard
False! Highly multimodal can be easy.

Maximally multimodal problem

Half the points in the space are local
optima, yet the problem is easy for GA



Ruggedness/Modality

 \WWhat lies between the extremes??

|deas:

« Structured ruggedness vs. “random”
ruggedness (noise)?



Properties (Concepts)

* Ruggedness/Modality
* Deception
* Epistasis



Deception

« Some “fit” low order hyperplanes of the search
space “guide” the search toward some solution
or building block that is not globally competitive

* Fitness of a hyperplane = average of fithesses of
the individuals in the hyperplane

* Fully deceptive

£(0**)>F(1**) £(00%)>f(11*),f(01*),f(10%) f(000) = 28 f(001) = 26
£(*0%)>f(*1%) £(0*0)>f(1*1),£(0*1),f(1*0) £(010) = 22 (100) = 14
£(**))>f(**1) £(*00)>f(*11),f(*01),f(*10) f(110)=0 f(011) =

(

f(111)>f(000),f(001),f(010),f(011),f(100),f(101),f(110) f(101) =0 f(111)—30
« Minimally deceptive, consistently deceptive ...



Deception

e Two extremes

— The only challenging problems for GAs are
deceptive

— Deception is neither necessary nor sufficient
for GA-hardness



Deception

e Two extremes

— The only challenging problems for GAs are
deceptive

= — Deception is neither necessary nor sufficient
for GA-hardness



Deception

* Work on deception is based on the
Static Building Block Hypothesis:
“Given any short, low-order hyperplane partition,
a GA is expected to converge to the hyperplane
with the best static average fitness.”

* The hypothesis ignores the distinction (made by
the Schema Theorem) between observed and
static fitness of a hyperplane.



Deception

Some deceptive problems are GA-easy

max f(x,2,x,),0<x, <1

x; +10x3,x, <0.995

X, X,) =
S 1 2) {2(1_x1)2+10x22,x2 >(0.995

The optimum is (0,1).
Encoded on 20 bits, the problem has a fully
deceptive sub-problem of order 10: (1,#)

The problem is easily solved by a standard GA.

Why? Collateral convergence. The last 10 bits
converge first and alter the observed fitness of
the 00..0 schema for the first 10 bits.



Deception

Some problems with no deception are GA-hard.
xe[O,l],f(x):{ 22L+1’x:9 L =t#bits

X~ ,otherwise
Any hyperplane H that contains the optimum, O,
has f(H)>2. Any hyperplane H that does not

contain O has f(H)<1. — no deception
Needle in a hay stack problem, hard for GAs.

Why? Because of high variance in the fitnesses
of the hyperplanes associated with the optimum.
Observed average never reflects static average.




Properties (Concepts)

* Ruggedness/Modality
* Deception
* Epistasis



Epistasis

At a high level: epistasis — the degree of
interdependence among genes (with respect to
their contribution to fitness).

How to quantify it?

— Obvious for some problems (e.g. NK-, SAT-
landscapes)

— Harder to generalize

Polygeny: the number of genes that influence
one particular trait

Pleitropy: the number of traits influenced by a
particular gene

Constant across genesl/traits or variable



Epistasis and GA hardness

* No epistasis should be easy — Separable
functions — Line search

 How much epistasis for a landscape to
become hard?

* \Which operators are more suitable for
various degrees of epistasis?

— As epistasis increases, the relative advantage
of crossover over mutation is reduced, but still

at high levels



Quantifying Epistasis

— a mathematical formula for
epistasis
— Requires full knowledge of the domain

— Not quite clear (to me) why the formula should
reflect epistasis

— High variance if formulas are computed over
samples (opposite results can be obtained)

— Support of relationship between epistasis
value and GA hardness in the paper is week



Properties (Concepts)

* Ruggedness/Modality
* Deception
* Epistasis



Studying Landscapes

Properties (Concepts) «¢u———) Techniques (Metrics) <=

\

Problem hardness (GA Hardness)

Goals: Method types:
e acquire understanding e qualitative
» making predictions e quantitative

* making better EA design choices



Techniques/Measures

* Fitness-distance relationship
 Auto-correlation & correlation length
* Operator fitness correlation



Fithess-Distance Relationship

Intuition based on parallel between EAs and general
search techniques (e.g. A%)

— Fitness function < Heuristic function

— Heuiristics try to approximate distance from current point to goal

Hypothesis: good correlation between fithess and
distance (to global optima) should make search
amenable

Quantitative: computing actual correlation figure
(standard formula from statistics)

— Not always good to summarize the relationship between fithess
and distance

Qualitative: fitness vs. distance scatter plots
— Can reveal structure of the landscape



Fithess-Distance Relationship

* Assessing the FD relationship can be used
to predict problem hardness

* Not infallible
* Not generally applicable



FDC by examples

« Confirmation of intuitive results
« Explanation of unintuitive results
 Make comparisons (e.g. among representations)



« Classify easy as easy, hard as hard
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Figure 56. An NK landscape Figure 57. An NK landscape Figure 58. An NK landscape
with N =12and K =1 (r= with N =12and K =3 (r = with N=12and K =11 (r =
—0-64). —0-25). —0-01).



FDC by examples

Classify easy as easy, hard as hard
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Figure 59. Deb & Goldberg’s Figure 60. Two copies of Deb

fully easy 6-bit problem (r =
—-0-23).

& Goldberg’s fully easy 6-bit
problem (r = —0-23).

Fitness
N

Figure 61. Three of Deb &
Goldberg’s fully easy 6-bit prob-
lems (r = —0-23, 4000 sampled
points).

— Multiple copies of the same sub-problem don’t make the

problem harder

— Separate problem difficulty from algorithm resources



FDC by examples

» Classify easy as easy, hard as hard

Fitness

Figure 62. Grefenstette’s deceptive but easy

20-bit problem (r
points).

—0-32, 4000 sampled

14
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Figure 63. Grefenstette’s non-deceptive but
hard 10-bit problem. The single point with
fitness 2048 is omitted from the plot. When
included, r = —0-09, when excluded, r = 0-53).

A



FDC by examples

Classify easy as easy, hard as hard
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F‘igure 64. Ackley’s porcupine problem on 8 Figure 65. Horn & Goldberg’s maximum
bits (r = —0-88). modality problem on 9 bits (r = —0-83).

High modality can be easy



FDC by examples

« Classify easy as easy, hard as hard
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Figure 80. Holland’s royal road on 32 bits
(b=28,k=2and g =0), (r =025, 4000

sampled points).

Fitness

Distance

Figure 81. Holland’s royal road on 128 bits
(b =8 k=4and g =0), (r =027, 4000
sampled points).



FDC by examples

« Classify easy as easy, hard as hard
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FDC by examples

« Classify easy as hard
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15 bits converted to a maximization problem bits (r = —0-30, 4000 sampled points).

l:&] Figure 86. De Jong’s F1 binary coded with Figure 87. De Jong’s F1 Gray coded with 15
(r = —0-01, 4000 sampled points).

High fit points at all distances from the Correct that Gray encoding is easier
optimum, a GA is expected to have no for GA on this problem.
problems locating one

FD relation reflects that representation makes a difference



FDC by examples

Classify easy as hard
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Figure 105. Liepins and Vose’s fully deceptive

problem on 10 bits (r = 0-98).

Correctly shows that problem is hard

0.5

Fitness
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Vose’s fully deceptive problem on 10 bits (r =

Figure 106. The transform of Liepins and
—0-02). Correlation cannot detect the X struc- l:b

ture.

Problem is easy because one of the
substructures has FDC ~ -1

FD relation reflects that encoding makes a difference



FDC by examples

e Classify hard as easy?

— Can happen when FD relation is determined based
on sampling and important points are missed



Issues with FD relation

Knows nothing about GAs — good or bad?

— Indicator of how difficult a problem should be (i.e. general hardness
rather than GA hardness

— EDC = -0.5 but GA does poorly — probably something wrong with the
A

Requires a distance measure — what makes a good distance?

— Define distance based on the operators intended for use (i.e. tell it
something about GAs) — loose generality

Says something about problems for which solutions are already
known

— Extend it by determining (local) optima based on a few hill-climbing runs
and computing distance from those

« Sampling can miss important points and give misleading conclusions
— Can we really use it to make predictions about real world problems??

Information on small examples of problems does not necessarily
generalize to larger instances



Techniques/Measures

* Fitness-distance relationship
« Auto-correlation & correlation length <
* Operator fitness correlation



Auto-correlation and
correlation length

Auto-correlation: for each distance h, how correlated are the fithesses
of the points which are separated by that distance h from each other

— Roughly corresponds to the distance one can jump and still have some
information about the fithess there given the fithess here

— Computed usually using pairs of points on some random walk through the
space

Correlation length t: the distance h for which the auto-correlation is 72

Distance is defined in terms of number of steps taken by some
operator — function of the landscape under that operator

Assumptions: landscape is isotropic (statistics of a random walk do not
depend on the particular random walk used)

— Is it really applicable in real world problems?



* 1~ exploratory horizon beyond which genetic
search degrades to random search

Auto-correlation and

correlation length

— 1 is small — decrease rates of mutation & crossover

« Relationship between t and EA performance

K 0 1 2 4 8 16 32 48 95
T 2996 (2437 |19.51 |14.15 |7.06 3.90 1.72 1.00 0.52
Imp. 19.80 | 16.00 |15.20 |11.60 | 8.60 6.20 3.80 5.4 5.2

The relation between the correlation length t of an NK-landscape and the number of
improvements Imp found by GENITOR during runs of 2048 generations. The
dimension of the landscapes is N = 96 and the degree of epistatic interaction K takes
values K=0,1, 2, 4, 8, 16, 32, 48, 95. The results are averaged over 5 runs.




Techniques/Measures

* Fitness-distance relationship
 Auto-correlation & correlation length
* Operator fitness correlation



Operator fitness correlation

« Correlation between fitness of parents and
fitness of children

« Same isotropy assumption must hold.
* Results on NK |landscapes

4 bits mutated

mutation 1-point crossover

= x x m
T
(AR ]



Operator fitness correlation

 Results on TSP

Pox ~ 0.72 PReverse = 0.86
PpPMx ~ 0.61 PRemove-and-Reinsert — 0.80
Pcx =~ 0.57 Pswap =0.77
pex = 0.90

* Hypothesis: high correlation means high EA
performance

« Empirical results seem to support hypothesis,
however, only 5 runs were performed



Operator fitness correlation

Predictive models using operator fitness correlation

Try to fit a linear model to the dependency between the
fitness of the parents and the fitness of the children

Static estimation vs. dynamic estimation

— Dynamic estimates have a lot more variance

Crossover: less linear & more variance

Linearity and variance also depend on the problem and
the operator rates



Operator fitness correlation

Regression: y = 0.018 + D.8972x%, r =1.000

Regression: y =0.002 + 0.848x, r = 0.998
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Operator fitness correlation

Regression: y =0.017 + 0.536x, r = 0.7 11
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Operator fitness correlation

* lterate the model to predict change in average fitness of
the population over time
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Figure 13: Predicted vs. Actmal Population Fitnesson f5

* As average fitness rises over time, smaller
improvements result from same amount of variation

— Scale fitness for average fitness to increase faster



Techniques/Measures

* Fitness-distance relationship
 Auto-correlation & correlation length
* Operator fitness correlation



Studying Landscapes

Properties (Concepts) <) Techniques (Metrics)

\

Problem hardness (GA Hardness)

Goals: Method types:
e acquire understanding e qualitative
» making predictions e quantitative

* making better EA design choices



Topics

* \What are landscapes?
« Why talk about them?
» Landscape characterizations



Conclusions

No single perfect way to look at the big picture

Must consider all angles collectively to get the
view

Must extend work from analyzing hand-crafted,
well known problems to real-world, unknown
ones

|dentify additional, more relevant properties of
landscapes to be used for problem-to-EA
matching



