EClab 2002 Summer Lecture Series

Introductory Lectures in Basic Evolutionary Computation Theory

Jeff Bassett

Thomas Jansen

R. Paul Wiegand

 $\tt http://www.cs.gmu.edu/{\sim}eclab/summerlectureseries.html$

ECLab

Department of Computer Science George Mason University

Summer Lecture Series

- The summer lecture series idea
- Why theory?
- Hierarchy of EC theory
- 2002 Summer lecture schedule
- Continuing the effort in the future

The Summer Lecture Series Idea

- Contributors
 - Thomas Jansen
 - Jeff Bassett
 - R. Paul Wiegand
- Purpose
 - Give students (& post-docs) experience
 - Provide a service to GAG members
 - Facilitate GAG activity during summer

Rafal Kicinger Bill Liles

Why Theory?

- Personal interests
- Background material for frequent GAG topics
- Challenging subjects to teach

Why Theory?

- Personal interests
- Background material for frequent GAG topics
- Challenging subjects to teach
- Everyone should know a little theory!

Problems Landscapes for EAs

- Landscapes for Analysis
- Analysis of Problems/Landscapes
- Problem Transformation
- Component Analysis
- Algorithm Analysis
 - Local Analysis
 - Global Analysis
 - Models of EA Dynamics
 - Algorithm Design
- No Free Lunch

Hierarchy of EC Theory	Examples:	
 Problems Landscapes for EAs Landscapes for Analysis Analysis of Problems/Landscapes Problem Transformation Component Analysis 	 NK-Landscapes N-Peak Landscapes OneMax Royal Road HIFF Long Path 	
 Algorithm Analysis Local Analysis Global Analysis Models of EA Dynamics Algorithm Design No Free Lunch 		

http://www.cs.gmu.edu/~pwiegand/ectheory.html

Problems Landscapes for EAs

- Landscapes for Analysis
- Analysis of Problems/Landscapes
- Problem Transformation
- Component Analysis
- Algorithm Analysis
 - Local Analysis
 - Global Analysis
 - Models of EA Dynamics
 - Algorithm Design
- No Free Lunch

http://www.cs.gmu.edu/~pwiegand/ectheory.html

- Fitness Distance Correlation
- Separability / Decomposability
- Walsh Analysis
- **Epistasis**
- Deception

Problems Landscapes for EAs

- Landscapes for Analysis
- Analysis of Problems/Landscapes
- Problem Transformation
- Component Analysis
- Algorithm Analysis
 - Local Analysis
 - Global Analysis
 - Models of EA Dynamics
 - Algorithm Design
- No Free Lunch

http://www.cs.gmu.edu/~pwiegand/ectheory.html

Examples:

 Analysis of Gray versus binary coding

Hierarchy of EC Theory	Examples:	
 Problems Landscapes for EA Landscapes for Analysis Analysis of Problems/Landscape Problem Transformation Component Analysis Algorithm Analysis Global Analysis Models of EA Dynamics Algorithm Design No Free Lunch 	 Evolvability Operator Correlation/Correlation length Population Sizing Mutation Probability Convergence Velocity of Operators Fixed point sizes of variable length genomes Selection/Takeover analysis Selection Analysis in Spatially Embedded Populations 	

http://www.cs.gmu.edu/~pwiegand/ectheory.html

Problems Landscapes for EAs

- Landscapes for Analysis
- Analysis of Problems/Landscapes
- Problem Transformation
- Component Analysis
- Algorithm Analysis
 - Local Analysis
 - Global Analysis
 - Models of EA Dynamics
 - Algorithm Design
- No Free Lunch

http://www.cs.gmu.edu/~pwiegand/ectheory.html

- Local Performance Measure
- Traditional Schema Theory
- Construction and Survival Theory
- Exact/CorrectSchema Theory

Problems Landscapes for EAs

- Landscapes for Analysis
- Analysis of Problems/Landscapes
- Problem Transformation
- Component Analysis
- Algorithm Analysis
 - Local Analysis
 - Global Analysis
 - Models of EA Dynamics
 - Algorithm Design
- No Free Lunch

http://www.cs.gmu.edu/~pwiegand/ectheory.html

- Runtime Analysis
- Analysis of "Convergence"
- Convergence Velocity
- Measuring
 Coevolutionary
 Progress /
 Dynamics

HIERARCHV OF HC THEORV	
Therefore of Le Theory	Examples:
 Problems Landscapes for EAs Landscapes for Analysis Analysis of Problems/Landscapes Problem Transformation Component Analysis Algorithm Analysis Local Analysis Global Analysis Models of EA Dynamics Algorithm Design 	 Dynamical Systems Models of the Simple GA Markov Models and Expected Behavior Analysis Evolutionary Game Theory Teaching/Test Set Analysis Statistical Mechanics

Problems Landscapes for EAs

- Landscapes for Analysis
- Analysis of Problems/Landscapes
- Problem Transformation
- Component Analysis
- Algorithm Analysis
 - Local Analysis
 - Global Analysis
 - Models of EA Dynamics
 - Algorithm Design _
- No Free Lunch

http://www.cs.gmu.edu/~pwiegand/ectheory.html

- Messy GAs
- Linkage Learning
- Graphical Models
- Adaptive Rates of Mutation and the 1/5th Rule
- Partial Restart Theory

July 2 (Tue, 3p-5:30p): No Free Lunch	[Thomas Jansen]
July 18 (Thu, 3p-5:30p): Schema Theory [Bill Lile	es & Paul Wiegand]
 August 1 (Thu, 3p-5:30p): Global Analyses 	[Thomas Jansen]
 August 15 (Thu, 3p-5:30p): Walsh Analysis & Deception 	[Paul Wiegand]
 August 29 (Thu, 3p-5:30p): Vose Explained 	[Rafal Kicinger]

July 2 (Tue, 3p-5:30p): No Free Lunch	[Thomas Jansen]
 Intro to the lecture series 	
 Original NFL 	
 Whitley NFL 	
 NFL Assumptions and the NFL Debate 	
The utility of NFL	
July 18 (Thu, 3p-5:30p): Schema Theory [Bill Liles	s & Paul Wiegand]
August 1 (Thu, 3p-5:30p): Global Analyses	[Thomas Jansen]
 August 15 (Thu, 3p-5:30p): Walsh Analysis & Deception 	[Paul Wiegand]
 August 29 (Thu, 3p-5:30p): Vose Explained 	[Rafal Kicinger]

July 2 (Tue, 3p-5:30p): No Free Lunch	[Thomas Jansen]		
July 18 (Thu, 3p-5:30p): Schema Theory	ll Liles & Paul Wiegand]		
 Traditional Schema Theory 			
 Exact/Correct Schema Theory 			
 Construction & Survival Theory 			
 August 1 (Thu, 3p-5:30p): Global Analyses 	[Thomas Jansen]		
 August 15 (Thu, 3p-5:30p): Walsh Analysis & D 	eception [Paul Wiegand]		
 August 29 (Thu, 3p-5:30p): Vose Explained 	[Rafal Kicinger]		

July 2 (Tue, 3p-5:30p): No Free Lunch	[Thomas Jansen]
July 18 (Thu, 3p-5:30p): Schema Theory	es & Paul Wiegand]
 August 1 (Thu, 3p-5:30p): Global Analyses 	[Thomas Jansen]
 Analysis of "Convergence" 	
 Runtime Analysis 	
 Local versus Global Analysis 	
 August 15 (Thu, 3p-5:30p): Walsh Analysis & Deception 	[Paul Wiegand]
August 29 (Thu, 3p-5:30p): Vose Explained	[Rafal Kicinger]

July 2 (Tue, 3p-5:30p): No Free Lunch			[Thoma:	s Jansen]
 July 18 (Thu, 3p-5:30p): Schema Theory 	[Bill	Liles	& Paul	Wiegand]
 August 1 (Thu, 3p-5:30p): Global Analyses 			[Thoma:	s Jansen]
August 15 (Thu, 3p-5:30p): Walsh Analysis	& Decep	otion	[Paul	Wiegand]
 Introduction to Walsh Functions 				
 Walsh Coefficients and the BBH 				
 Defining Deception using Walsh Func 	tions			
August 29 (Thu, 3p-5:30p): Vose Explained		[Rafal K	icinger]

- July 2 (Tue, 3p-5:30p): No Free Lunch [Thomas Jansen]
 July 18 (Thu, 3p-5:30p): Schema Theory [Bill Liles & Paul Wiegand]
 August 1 (Thu, 3p-5:30p): Global Analyses [Thomas Jansen]
 August 15 (Thu, 3p-5:30p): Walsh Analysis & Deception [Paul Wiegand]
 August 29 (Thu, 3p-5:30p): Vose Explained [Rafal Kicinger]
 Introduction to Vose's Dynamical Systems model of SGA
 - Defining Mixing matrices for variation
 - Markov Models

Continuing the Effort in the Future

Annual summer lecture series?
Student organized, student lead
Topics depend on organizers

Continuing the Effort in the Future

Annual summer lecture series?
Student organized, student lead
Topics depend on organizers

(Doesn't have to always be theory!)