Parallel Models for
Evolutionary Algorithms

Adrian Grajdeanu
agrajdea@gmu.edu

ECLab
George Mason University
2003 Summer Lecture Series

Presentation Plan

—History and origins of parallel models for Eas
—Design Issues of a Parallel Model
—Canonical parallel models

—  Master/Slave

—  Finely grained

—  Coarsely grained
—Hierarchical parallel models
—Final considerations
—Questions

History and Origins of Parallel EAs

Presentation Plan

Bethke (1976) in his study he describes a (global) parallel implementation of a
conventional GA and of a GA with a generation gap (i.e., it only replaces a
portion of its population in every generation)

Grosso (1985) proposed an implementation of a serial simulation for a
concurrent formulation

Tanese (1987), Pettey et al (1987) are two of the earliest parallel
implementations. The population of a GA was broken into a relatively small
number of sub-populations and each processing element in the architecture was
assigned an entire sub-population and executed a rather standard GA.

Then Cohoon et al (1987) shows that the punctuated equilibria theory of natural
systems transfers to parallel implementations of EAs and leads to bursts of
evolutionary progress.

Gordon et al (1992) and Adamidis (1994) consecrated the term of island model

parallel GA.
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Design Issues of a Parallel Model

—Decide first what steps of the EA want to parallelize?
—Look at problem specifics
—Consider available hardware

—>Choose a parallel model
—Decide on the individual EAs.

—Choose a topology

—Synchronous or Asynchronous model?

—Consider communication overhead: is it worth it?
—Envision your migration amount, frequency and policy.

—Use a toolkit or not?
—Tune your parameters

—Duplication is next to impossible, so collect extensive results and keep them!
—Decide clearly how to compare this parallel algorithm with other
(non)parallel algorithms.
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Master Slave model for parallel EA

a.k.a. Global Parallel EA
Idea

—>Maintain a single population

—>Have one process perform management of population
—Dispatch to slave processes the evaluation of new individuals
—May perform genetic operators application in parallel too

Advantages

—Works well for small genotype footprint and expensive evaluations
—Scales very well up to a certain number of small processes
—Suited for star topology and heterogeneous systems

Disadvantages

—>Scalability beyond a certain level - master process becomes bottleneck
—Keeping the workload balanced is tricky in heterogeneous systems

Master Slave model for parallel EA

Synchronous or Asynchronous

If the main process stops and waits for all evaluations to complete
before moving to next generation, the algorithm is said to be
synchronous. Otherwise asynchronous.

A synchronous Global Parallel EA carries the same search as a serial
EA, with speed being the only difference.

An asynchronous Global Parallel EA has different population
dynamics. Its results are also more difficult to duplicate.




Master Slave model for parallel EA

Master Slave model for parallel EA

Shared or Distributed Memory

Can be efficiently implemented in both models. In shared memory
model each slave process writes back its results without conflicts. On
distributed memory model, inter-process communication comes into

play.

Balancing strategy

The number of individuals dispatched to each slave process can be
fixed or dynamically determined. A fixed strategy is less efficient
because it may lead to unbalance. A dynamic strategy where each
slave process takes on more load as it becomes available inherits
communication or shared resource synchronization overhead.

Topology and Speedups
Reasonable speedups were obtained with up to 16 processors, but
further attempts proved futile due to:
—The overhead of communication between the master process
and the slaves becoming significant
—Operating systems inadequacies when scheduling
computationally intensive processes to available processors
With such a small number of processes different topologies proved to
lead to similar results, leaving researchers without a clear winner.

Master Slave model for parallel EA

Presentation Plan

Other sources of parallel gain

In some implementations the genetic operators application was
orchestrated in parallel. However these operations are so simple that
often times the parallel gains are offset by the communication and
synchronization overhead

Selection may be also performed in parallel. Some forms of selection
require information about whole population and thus are not very
appropriate. However a tournament type selection would be prime
candidate.

In addition, Branke er al (1997) parallelized different types of global
selection on a 2D grid of processors and showed that their algorithms
are optimal for the topology used. (O(N) on a N x N grid )
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Finely Grained model for parallel EA

Idea

—Maintain a single population spatially-structured into sub-populations
called demes.

—Selection and mating are restricted to a small neighborhood
—Neighborhoods overlap to allow some interaction among all individuals

Advantages

—Suited for massively parallel computers

—Can easily parallelize many features of the EA: selection, survival, mating

Disadvantages

—The gain in efficiency is worth only on parallel computers, otherwise
too much communication overhead

—Decisions of the topology, neighborhood size and shape complicate the
design and understanding of the dynamics.

Finely Grained model for parallel EA

Topology

Cohoon (1987): the topology doesn’t matter much as long as it is
densely connected and has a small diameter to insure adequate mixing
as time progresses

However:

Schwehm (1992) compares the following topologies: ring, torus,
16x8x8 cube, 4x4x4x4x4 hypercube and a 10-D binary hypercube, He
found that the torus topology led to fastest convergence. (no mention
of the resulting quality though!!!)

Anderson and Ferris (1990) experimented with two rings, a hypercube,
two meshes and an ‘island’ (only one individual in each deme
overlapped with other demes). Conclusion was that for their problem
(assembly line balancing) the ring and island structures were the best.
Baluja (1992, 1993) compared two variations on a linear structure and
a 2-D mesh concluding that the mesh gave best results on almost all
problems tested.
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Finely Grained model for parallel EA Presentation Plan
—History and origins of parallel models for EAs
—Design Issues of a Parallel Model
Neighborhood —Canonical parallel models
Manderick and Spiessens (1998) observed that the performance of the - Master/Slave
algorithm degraded as the size of the neighborhood increases. At the —  Finely grained
extreme, if the size of the neighborhood was big enough, this parallel —  Coarsely grained
GA was equivalent to a single panmitic population. —Hierarchical parallel models
—Final considerations
Sarma and De Jong (1996) found that the ratio between the size of the —Questions
neighborhood and the size of the whole grid is critical parameter that
determines the selection pressure.
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Coarsely Grained model for parallel EA

a.k.a. Island Model
Idea

—Split the population in many sub-populations - islands

—Alternate periods of extensive isolated evolution with migration
—During isolated evolution each process runs on its island a full blown EA
—At certain times, few individuals migrate between islands

Advantages

—Uniquely suited for message passing parallel systems

—Map well on many of topologies (mesh, ring, hyper-cube, etc.)
—More then hardware accelerators for EAs

Disadvantages

—More complex design decisions due to increased number of parameters
as well as dynamics of multiple EAs running in parallel

Coarsely Grained model for parallel EA

‘Punctuated Equilibria’ theory

—It is the biological theory that justifies the Island Model

—Introduced by Elredge and Gould (1972) to explain the missing links
in fossil records.

—It states that most of the time, populations are in equilibrium, but
changes in the environment can trigger rapid evolutionary changes.
—Cohoon (1987) shows that this property of bursts of rapid
evolutionary progress does show up in several applications. He observed
little change between migrations, but new solutions were found shortly
after individuals were exchanged.

In Holland’s (1975) terms

—Exploitation arises from isolated evolution

—Exploration comes from infusion of migrants

— Alteration between the two above hold the promise that island models
would be more then just hardware accelerators for EAs

Coarsely Grained model for parallel EA

Definition

P is the whole population P, are individual sub-populations.
M=N x u.
M-overall size of population, N - number of islands, u - size of sub-population.

Epoch is the period of isolated evolution
G, is a number of generations each island evolves in isolation

S a N x N matrix, usually but not necessarily symmetrical and 0 diagonal. S;
are the number of individuals from P, to migrate into P, at the end of each
epoch.

Coarsely Grained model for parallel EA

Islands Model(E, N, )

Concurrently fori <= 1 to N
Initialize(P;, w); Initialization

forepoch <= 1to E
{
Concurrently fori < 1 to N Isolated Evolution for an epoch
Sequential EA(P;, G;);

Concurrently fori <= 1to N
=1
Concurrently fori,j <= 1to N
P, U= Migration(P;, S; )); Migration
Concurrently fori <= 1 to N
P, = Assimilate(P;);
}

ExtractProblemSolution; Solution Extraction
}
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Coarsely Grained model for parallel EA

Parameters of an Island Model implementation
—Magnitude of migration

—Frequency of migration

—Epoch termination criterion

—Running regime: synchronous v. asynchronous

—Migrant selection strategy

—Number of sub-populations and their sizes

—Individual EAs: operators, selection, survival, fitness

Coarsely Grained model for parallel EA

Magnitude and Frequency of migration

—Limited migration between populations capitalizes on ‘punctuated
equilibria’ effect. For example 2 migrants to each neighboring island every
50 generations.

—More migrants or shorter epochs have the effect of precluding isolated
evolution on separate islands. Genetic diversity vanishes quickly and the
behavior approximates that of a classic EA running on the whole population.
—Insufficient migration keeps the islands too far apart. The genetic richness
of the neighboring populations doesn’t have enough chance to spread out. In
this regime the parallel run simulates N independent runs with population
size N times smaller.
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Coarsely Grained model for parallel EA Coarsely Grained model for parallel EA
Epoch Determination Synchronous v. asynchronous
—In most studies the epoch duration was predetermined and kept static —Just like a GA may be generation based or steady-state, the Island Model
throughout the run. However, if the set duration is not long enough to allow parallel EA may have migration performed in synch or not.
the individual sub-populations to achieve equilibrium, the underlying theory —For example, Marin et a/ (1994) proposed a centralized asynchronous
is violated. On other hand, if the set duration is too long, computational migration method in which all slave processes would post their best partial
cycles are wasted crunching a population beyond usefulness. results to a master process. Then the master process chooses a BSF overall
—A better way is to dynamically determine the end of the epoch at the point and broadcasts it to all other processes. Experiments showed near-linear
when stasis sets in. This could be when the BSF individual in the island speedup on a network of workstations with few nodes (6). Authors claim that
doesn’t improve in X many generations, or when the whole sub-population the method scales well because communication is infrequent.
degenerates to just one distinct genotype. (This last variant is used in some —If the migration is asynchronous that is another hurdle in making
theoretical works.) duplication difficult.
—Epoch length must be long enough to allow exploitation. Given that,
variable length determined via equilibrium measures within sub-populations
achieve overall results slightly better (though unbalances the parallel
implementation and thus may lead to longer running times)
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Coarsely Grained model for parallel EA

Coarsely Grained model for parallel EA

Migration Strategy

—Amount of migration must be non-disruptive. Experiments show that about
25% or more is disruptive.

—Elitist or random: experiments show that selecting better (or best)
individuals to migrate leads to premature overall stagnation.

—Copy or move: once an individual is selected for migration it may get
moved to the target island or may generate a clone to be exported.

—>Static or dynamic: the amount of migration can be determined statically by
a migration matrix, or dynamic at runtime. An example of dynamic migration
would be to send a selected migrant to one of the neighbors chosen randomly.
Yet another examples are to send a migrant to that one island whose genetic
material is most different (Lin ez a/ (1994) ) or to that island that has
maintained the most diversity (Munetomo et al (1993) ).

—In the process of migration the local sub-populations may get an increase
in size. In order to reduce the size back to normal a process of assimilation
takes place. This assimilation bears all the properties of survival selection and
could be made part of it.
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Number of sub-populations and sizes

—The size of sub-populations must be above a minimum (critical mass) in
order to lead to a viable evolutionary trajectory.

—Cantu-Paz (1999) derives theoretical relations between the number of sub-
population and their size to the underlying topology degree of connectivity
and migration rate, aiming minimization in execution time.

—In general the number of sub-populations is given by the available
hardware. Experiments show however that up to 6 islands good speedup is
achieved. Yet, everything else being equal, the more islands there are, the
better quality of final solution one should expect.

—The islands may not have to be same sizes. In the canonical
implementation M=N x u, but may very well be that M= p,+ p,+...+ uy .
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Coarsely Grained model for parallel EA

Coarsely Grained model for parallel EA

Individual EAs

—On each island, the sequential EA is independent. It may be the same
running on all islands or may be totally different

—If the same EA is running on all islands, it may run on each one of them
with different parameters.

—On each island the fitness function is in general the same, but in some
cases may not be. Of particular interest here are multi-objective optimization
when on each island the fitness assigns different weight coefficients.
—Infusion systems are a particular case of island model when when one
island bootstraps the next and so on until the final island actually solves the
problem. The migration is unidirectional and the fitness function is
increasingly complex.
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Esoteric developments

In canonical Island Model only individuals may migrate. What if we were to
allow migration of EA’s parameters too? This may cover co-evolution
models due to modification of landscape, as well as meta-EAs.
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Coarsely Grained model for parallel EA

Extract Final Solution

—In general the final solution of the problem is given by taking the BSF
from all generations and all islands.

—In some special cases the final solution may be restricted to come only
from a subset of islands (infusion models).

—Yet the final solution may be a combination of BSF from multiple islands
when each island solves only a part of the problem.
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Coarsely Grained model for parallel EA

Comparison with a single EA

—Execution time is not a good yardstick. The cost of an algorithm is
comprised of fixed and variable cost. The same EA running as a single
algorithm may look better or worse (time-wise) then when used in an island
model of same overall population size, simply depending on the
implementation details.

—In general the cost of communications is ignored. The island model
algorithms are coarsely grained and therefore the computation time
dominates the communication time.

— A better way to measure performance is to use for example the number of
potential solutions generated (evaluations). This focuses the comparisons on
the particularities of the EAs and away from low-level implementation
details.

—It is also recommended to keep things about equal with regards to other EA
parameters that may influence its dynamics. An appropriate single EA to
compare with an island model would have a population size P=X P,, would
run for total generations G= X G, and would have the number of offspring per
generation equal to the overall total number of offspring per generation in the
island model 30

Coarsely Grained model for parallel EA

Presentation of results
—On the horizontal axis should be the amount of computing resources
(evaluations)
—On the vertical axis may be one of the following:

—BSF overall

—population mean of overall BSF producing island

—overall mean

—highest population mean among islands

—other?
—A good question is to figure out which island gives the overall BSF or best
mean in each epoch? If it is the same island over and over again, that one
island dominates the run and the other islands are useless.
—When performing statistical analysis, keep in mind that a parallel run only
gives one sample point, not N (number of islands). The others are statistically
dependent.
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Hierarchical Parallel Models

Presentation Plan

—Hybrid models that mix the canonical models. For example, an
implementation may be at a higher level a coarsely grained (island model),
with a single population parallel EA at low level.

—Hierarchical models combine the benefits of its components and were
found to give better performance then any of them alone.
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Final Considerations

References

—Duplication is very difficult. Due to the nature of parallel implementation,
the trajectory followed by each run is determined in part by the operating
system scheduling. The amount of work to constrain this unknown in order to
be able to duplicate results would probably void the benefits of using a
parallel implementation.

—Using Toolkits. It may be a good idea to use ready available toolkits. The
implementation of a parallel method is complex enough to warrant
employing existing frameworks. It would save time, avoid costly mistakes
and give someone else to blame when things go awry.
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Questions, frustrations hostilities...
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