GMU Spring 2021 INFS 519 - Program Design and Data Structures

Instructor: Hal Greenwald (<u>hgreenwa@gmu.edu</u>) Office Hours: By appointment Lecture: 7:20 pm - 10:00 pm Tuesday ONLINE

Course Description

Study of the fundamentals of data structures and algorithms applied in programming solutions to application problems. The course stresses programming in a modern high-level language.

• Prerequisites

The prerequisite for this course is SWE-510 or its equivalent. You should have a semester's worth of basic programming in Java, including program design, coding, and debugging techniques.

Textbooks

Mark Allen Weiss, Data Structures & Problem Solving Using Java, Addison-Wesley (4th ed. is latest).

Topics to be covered and schedule

The following topics will be covered in approximately the order listed below. Lecture notes will be posted under Blackboard Announcements prior to each class.

Торіс	Textbook
	Chapter(s)
Java – review of selected topics	1 - 4
Algorithm Analysis	5
Recursion, Sorting Algorithms	7,8
Array, ArrayList, Stacks, Queues	15,16
Linked Lists	17
Trees	18
Binary Search Trees, B-Trees	19
Hash Tables	20
Graphs	14
Huffman Encoding	12.1
Special Topics	TBD

Syllabus: may be subject to modification.

Date:	Topics include:	
Week 1	4	
Week I	Introduction, binary and hexadecimal integers, ASCII and Unicode, Java data types, Strings, Arrays, Multidimensional	
	Arrays, ArrayList, Iterator and ListIterator	
Week 2	Overriding and Overloading methods, Inheritance, Static vs	
WCCK 2	Dynamic polymorphism, Truth tables, Java bitwise and bit	
	shift operators, Introduction to Algorithmic Complexity,	
	Linked Lists Homework # 1 assigned	
Week 3	Abstract Data Types, Sorting and Searching, Singly Linked	
Week 5	List, Doubly Linked List, code examples and analysis	
Week 4	Circular Linked List, Generics, the Stack, Recursion	
Week 5	Collections framework and Collection interfaces, Legacy	
	classes and synchronization, Stack implementations: Array-	
	based vs Linked list	
Week 6	Recursion continued, Recursion vs Iteration,	
	The Queue interface, Homework # 2 assigned.	
Week 7	Priority Queues, Algorithm efficiency, Time/Space	
	Complexity, Binary Trees	
Week 8	Big O Notation, Binary Trees: Size, Depth, and Balance,	
	Midterm Exam (currently schedule for March 16)	
Week 9	Binary Search Trees, Logarithms, BST applications,	
	Case study, Homework # 3 assigned.	
Week 10	Time Complexity continued, Binary tree traversals (recursive	
	vs. iterative) continued, Recursive O(log(n)) search, AVL	
	Trees	
Week 11	AVL Trees continued, Balance factor, Rotations	
Week 12	Graphs: Directed vs Undirected, Weighted vs Unweighted,	
	Adjacency Matrix, Depth/Breadth-first search, Hash Tables,	
W/ 1 12	Homework # 4 assigned	
Week 13	Priority Queues revisited, Heap (Min/Max), Heap Sort	
Week 14	Huffman Encoding, special topics	
May 4	Final Exam (Cumulative) ONLINE 7:30PM-10:15PM	

Your course grade will be an aggregate of the following items:

- Homework (40 points): 4 Java programming assignments
- Midterm Exam: (30 points)
- Final Exam cumulative: (30 points)

Grading:

- A: is at least 90 points
- B: is at least 80 points
- C: is at least 70 points

Honor Code

The class enforces the **GMU Honor Code**. Violations of academic honesty will NOT be tolerated.

Both the University and the Computer Science Department have honor codes you are expected to adhere to: <u>https://oai.gmu.edu/mason-honor-code/</u> and

http://cs.gmu.edu/resources/honor-code/. You are bound by these honor codes. **Disability Statement**

If a disability or other condition affects your academic performance, please document it with the Office of Disability Services.

Campus Resources

Computer Labs – there are several freely available computer labs on campus, for hours and locations please see: http://doit.gmu.edu/students/computer-labs/computer-lab-locations/

Office of Disability Services - http://ds.gmu.edu

Counseling and Support Services - http://caps.gmu.edu

English as a Second Language (ESL) Writing Support -

http://writingcenter.gmu.edu/tutoring/esl-writing-support

Working together vs. individually

For this class homework and exams require individual work. Study groups are *encouraged*, but homework solutions and write-ups MUST be the result of individual effort. Similarly, study groups for examinations are encouraged. However, exams are individual effort and closed book.

Class Policies

Blackboard is used for class announcements, assignments, and other related information. Piazza is used for questions and discussion outside of lecture.