
Successfully Managing and Leading
Software Projects,

The Better Way of Managing and Leading

Software Intensive Projects

Chapter 1

Introduction

1

Source SEI

Successfully Managing and Leading
Software Projects,

Dr. Kenneth E. Nidiffer

Successfully Managing and Leading Software Projects

Software Engineering 625

Volgenau School of Information Technology and Engineering

George Mason University

Class Syllabus for SWE 625

Spring 2020

2

Successfully Managing and Leading
Software Projects,

Overview of the Class Syllabus for SWE 625

• Why Take SWE 625

• Scope

• Conclusions – DIB (Defense Industrial Board) Study on

Software Acquisition and Practices (SWAP) Study

Biography

• Administration

• Course Text

• Major Topics

• Course Background Requirements

• Course Evaluation Procedure

• Lecture Topics and Homework Schedule

• Course Materials

• Blackboard Learn

3

Successfully Managing and Leading
Software Projects,

Why Take SWE 625

• Successfully managing software intensive projects is a priority for the

industrial, government and academic organizations

• The ubiquity of software and its critical role require fundamental shifts in

software engineering management and engineering to maintain competitive

advantage

• The course helps participants to rapidly deploy innovation with

confidence within this shifting landscape by:

• Applying new principles in software engineering management for

software intensive systems

• Developing new practices for enabling business/mission capability

with software innovation

• Equips students in applying new management techniques in today’s

competitive job market

Successfully Managing and Leading
Software Projects,

Scope of Software Engineering (SwE) Management

Mission Focused

o System of

Systems – (SwE,

Cyber and AI/ML)

o Networked

Hardware/

Platforms

o Infrastructure

o Applications

o Workforce:

People who

digitally connect

to cyberspace

Source: SEI
5

Successfully Managing and Leading
Software Projects,

Conclusions - Defense Innovation Board (DIB) Software

Acquisition and Practices (SWAP) Study – 11 Jan 2019

• Software is ubiquitous and U.S. national security relies on

software. Well-equipped and well-trained warfighters provide the

capability necessary to defend the nation, but software critically

enables that mission. The ability to develop, procure, assure, and

deploy software is central to national defense and integrating with

allies and partners.

• Speed and cycle time are the most effective metrics for

software. Software is a critical element of the Department’s

approach to executing missions, collaborating with allies, and

managing its operations. DoD needs to deploy & update software

at the speed of (mission) need, and execute within the OODA

loop of our adversaries to maintain advantage.

6

The OODA loop is the cycle observe–orient–decide–act, developed by

military strategist and United States Air Force Colonel John Boyd.

Successfully Managing and Leading
Software Projects,

Conclusions - Defense Innovation Board Software

Acquisition and Practices (SWAP) Study – 11 Jan 2019

• Software is made by people, for people, so digital talent

matters. DoD’s current personnel processes and culture will not

allow its military and civilian software capabilities to grow nearly

enough. New mechanisms are needed for attracting, educating,

retaining, and promoting digital talent, and providing the

ecosystem that enables them to succeed.

• Software is different than hardware (and not all software is

the same). Hardware can be developed, procured, and

maintained. Software is an enduring and evolving capability that

must be supported and continuously improved throughout its

lifecycle. The DoD acquisition process and culture need to be

streamlined for effective delivery and oversight of multiple types

of software-enabled systems, at scale, and at the speed of

relevance.

7

Successfully Managing and Leading
Software Projects,

Biography

DR. KENNETH E. NIDIFFER, PMP

Principal Software Engineer

Software Engineering Institute, Carnegie Mellon University

Dr. Nidiffer has over fifty-seven years of experience in the marketing, research,

development, support, maintenance, and acquisition of software-intensive systems. His

24-year career in the U.S. Air Force (where he retired as a full colonel) is marked by

several firsts in the area of software implementations, such as, first space-based compiler,

first command-hardware in the loop simulation, a series of development/process

standards, etc. From 1983-1986 he helped establish several noteworthy contributions,

such as, the Software Productivity Consortium; the Software Project Management

Program at the Defense Systems Management College; the George Mason Software

Engineering Program and the Software Engineering Institute. At the Software Productivity

Consortium he launched the Consortium’s business initiative in software process

improvement, which became one of the largest programs in the world.

In 1991, Dr. Nidiffer left the Consortium to serve one of its founding members, Northrop

Grumman, as Director of Systems Design and Development, Data Systems Division, and

then as Director of Technical Operations, External Data Systems division, where he

directed over 500 engineers and support personnel in the successful development of a

variety of C4I, MIS/logistics, and high-speed computing applications.

8

Successfully Managing and Leading
Software Projects,

Biography

In 1995, he joined Fidelity Investments Systems Company as Senior Vice President of

Quality and Systems Assurance to lead a team of 165 professionals in implementing Total

Quality Management, best-in-class software engineering processes, and the largest financial

services test environment. He rejoined the Consortium in 1997 as Vice President for

Business Development growing the membership from 50 to 100 members. In 2007 he joined

the Software Engineering Institute to focus on promoting key software engineering

technologies that support government programs. He is currently a Principal Member of the

Technical Staff

Dr. Nidiffer has been widely published in the systems and software engineering community.

He received his B.S. degree in Chemical Engineering in 1962 from Purdue University,

Indiana, a M.S. degree in Astronautical Engineering in 1969 from the Air Force Institute of

Technology, Ohio, a MBA degree from Auburn University, Alabama in 1975 and his D.Sc.

degree from George Washington University, Washington D.C. in 1988.

He is a member of the Program Management Institute (PMI); the International Council on

Systems Engineering (INCOSE); the Air Force Association (AFA); Senior Member of the

Institute of Electrical and Electronics Engineers (IEEE) and Member of the IEEE Professional

and Activities Board (PAB); the Inter-National Committee for Information Technology

Standards (INCITS)/Software and Systems Engineering (INCITS/SSE) Technical Committee,

Senior member of the American Institute of Aeronautics and Astronautics (AIAA); member of

the National Defense Industrial Association (NDIA Systems Engineering Division); Co-Chair

of the NDIA/OSD (DDR&E) Industrial Software Committee and Co-Chair of the NDIA

Systems Engineering Education and Training Committee.
9

Successfully Managing and Leading
Software Projects,

Biography

Ken is a certified logistician; a Professor Emeritus of the Defense Systems Management

College; Industry Advisor on George Mason’s Computer Science Education Committee; a

Project Management Professional; and an adjunct engineering professor in graduate

engineering at George Mason University for over 28 years.

Dr. Nidiffer is a man of faith and a family-oriented person. He has been married for 56

years to the former Mary Emma Walsh of Havana, Florida and they have three daughters:

Sheri, Kristi and Kathi and three grandchildren. In 2002 and in 2007, he was selected as

the School of Information Technology’s adjunct professor of the year in Software

Engineering and received special recognitions for his GMU adjunct teaching service in

2009. 2013, 2017, and 2018.

10

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

• COURSE TITLE: Software Engineering Project Management

(SWE 625)

• INSTRUCTOR: Professor Kenneth E. Nidiffer

• SEMESTER CLASSES: Spring 2020 (27 Jan to 11 May 2020,

including final exam)

• SEMESTER FINAL EXAM: 11 May, IH, Room 206 *

• CLASS TIME/BLDG/ROOM: 1920 – 2200; IH, Room 206**

*Note 1: The student will be provided a reading day to prepare for the final exam 5 May

**Note 2: IH = Innovation Hall

11

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

• OFFICE HOURS: 1815 - 1900 Mondays

ENGR 5309, Nguyen Engineering

Building (Academic IV, Research II)

• Meeting Arrangement Mechanisms:

o By appointment in class

o By the Internet – knidiffe@gmu.edu – Best alternative

o By note in my mail box – Suite 4300, Nguyen Engineering Bld.

o By setting-up a conference call

o By setting-up a video-teleconference (VTC)

o Department Administration Assistant

• Ms. Beth Posocco: 703-993-1568

12

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

• CONTACT INFORMATION:

o Internet/E-mail: knidiffe@gmu.edu (Best Method)

o Oral Communication Mechanisms

• Method 1: (703) 455-4021(Home Phone Number) - Best

Method

• Method 2: (703) 217-0215 (Cell Phone) or Text – Good

Alternative Method

13

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

TEXT 1:Title - Managing and Leading Software Projects

Dated: 2009*

ISBN 987-0-470-29455-0

Author: Dr. Richard E. (Dick) Fairley

Publisher: John Wiley & Sons, Inc.

Options to Obtain:

1. Can Pick-up at University Bookstore (located in the

George W. Johnson Center)

2. Order on-line

3. Obtained previously owned book

* Students are expected to study and understand the

contents of the course text book

14

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

TEXT 2:Title - Systems Engineering of Software-Enabled

Systems

Dated: 2019*

ISBN 9781119535010

Author: Dr. Richard E. (Dick) Fairley

Publisher: John Wiley & Sons, Inc.

• Note 1: Students can but are not expected to buy this text

book since it can be downloaded for free*
• https://wiki-int.sei.cmu.edu/confluence/download/attachments/285903764/SysE_of_SwEnabled_Sys_Fairley_2019_9781119535041.pdf?api=v2

15

• Note 2: A copy has been place in Blackboard – Lecture 1

https://wiki-int.sei.cmu.edu/confluence/download/attachments/285903764/SysE_of_SwEnabled_Sys_Fairley_2019_9781119535041.pdf?api=v2

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

COURSE PREREQUISITES:
Undergraduate courses or equivalent knowledge in structured programming in a

high-level language, data structures, discrete mathematics, and machine

organization or assembly programming.

COURSE DESCRIPTION:
This course is concerned with processes involved in project planning; organizing;

staffing; estimating; measuring and controlling; communication, coordination and

leadership; and risk management. Topics covered include lifecycle delivery

approaches; process and engineering product development models with special

emphasis on the best practices contained in the Capability Maturity Model

Integrated (CMMI©) constellations and product standards. The course also

stresses the Program Management Institute’s Program Body of Knowledge

(PMBOK©) and the Software Engineering Body of Knowledge (SWBOK).

16

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

COURSE OBJECTIVES:

Upon completion of this course, students will know how to develop a software

project management plan for software intensive systems; how to set up monitoring

and control mechanisms; how to allocate and reallocate project resources; how to

track schedule, budget, quality, productivity, and progress; understand the CMMI©

frameworks and how to plan for the installation and sustainment phase of the

system life cycle. They will understand the importance of the work breakdown

structure and its relationship to the delivery lifecycle, resource planning and

execution, and progress and product measures from both a project and enterprise

perspective. In addition, they will understand the relationships among quality

assurance, configuration management, verification and validation, and test and

evaluation. They will also gain an understanding of the key issues in costing and

pricing units of effort, motivation of workers, agile development, Secure DevOps,

leading project teams, machine learning, ethics and total quality management.

17

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

MAJOR TOPICS:

A taxonomy of management functions; corporate goals and objectives; system,

project and product (functional and non-functional) requirements; architectural

frameworks; best practice frameworks, cost estimation techniques and models;

software process development models with special emphasis on the CMMI© and

software systems engineering delivery models; technical methods;

documentation, quality assurance, configuration management, verification and

validation, test and evaluation; staffing plans; monitoring and controlling

mechanisms; standards (e.g. IEEE/EIA 12207 and IEEE Std. 16326™), policies

and acquisition frameworks (i.e. Defense (e.g. DODI 5000.02, Defense Acquisition

Guidebook (DAG) and Commercial (e.g. Infrastructure Service Provider (ISP)

/Application Server Provider (ASP) frameworks; Platform as a Service (PaaS),

Software as a Service (SaaS)), and procedures; work packages, schedules,

budget, accounting systems, costing and pricing units of effort; risk management;

post deployment software support; leadership, ethics, team building and total

quality. Also, Defense Innovation Board (DIB) and Defense Science Board (DSB)

findings will be addressed.

18

Successfully Managing and Leading
Software Projects,

EVALUATION PROCEDURE:

Grades will be based on student homework, class contributions, student presentation

and the final exam in the following proportions:

Class Contribution (Contributions In Addition to the Six Articles*) 10 %

Homework 10 %

Six Articles* 10%

Project 15 %

Student Project Presentations** 10 %

Final Exam*** 45 %

Note: Final exam is scheduled for 11 May 2020 (7:30 – 10:10 pm)

* Articles are to submitted in class. Students can submit their articles during any class period.

Note: All articles will be accompanied with a one-page analysis of each article. Three articles are

to be from refereed sources and three can be from any source.

** 1920-2200/Innovation Hall Building; Room 206

*** 1930-2210/Innovation Hall Building; Room 206

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

19

Successfully Managing and Leading
Software Projects,

Lecture Topics

20

Session Date Topic

1 27-Jan Introduction to Project Management

2 3-Feb Process Models for Software Development

3 10-Feb Establishing Project Foundations

4 17-Feb Plans and Planning

5 24-Feb Project Planning Techniques

6 2-Mar Estimating Techniques

9-Mar Spring Break

Successfully Managing and Leading
Software Projects,

Lecture Topics

21

Session Date Topic

7 16-Mar Measuring and Controlling Work Products

8 23-Mar Measuring and Controlling Work Processes

9 30-Mar Managing Project Risk

10 6-Apr Teams, Teamwork, Motivation, Leadership and Communication

11 13-Apr Organizational Issues

12 20-Apr Furture of Software Engineering and It's Impact on Society

13 27-Apr Student Presentations (1920 – 2200/ IH Room 206)

14 4-May Student Presentations (1920 – 2200/ IH Room 206

5-May Reading Day

15 11-May FINAL EXAM (1930-2210/ IH Room 206

Successfully Managing and Leading
Software Projects,

GEORGE MASON UNIVERSITY

VOLGENAU SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

COURSE OVERVIEW

SOFTWARE ENGINEERING PROJECT MANAGEMENT 625

Course Materials Location (Blackboard Learn)

1. Announcements On-line Folder/In-class

2. Administrative Notes On-line Folder/In-class

3. Presentation (Slides) On-line Folder*

4. Student Handouts On-line Folder/In-class

5. Student Responses In-class

6. Graded Responses In-class

7. Student Presentation Mat’ls In-Class

8. Student Final Responses In-Class

9. Class Contributions In-Class

22

Successfully Managing and Leading
Software Projects,

Blackboard Learn

• Blackboard Learn (previously the Blackboard Learning

Management System) is a virtual learning

environment and course management system

developed by Blackboard Inc.

• Used by George Mason University

• SWE 625 Course information and assignments are

contained on Blackboard Learn

• The key file is “Weekly Lectures”

23

Successfully Managing and Leading
Software Projects,

Blackboard Learn

24

Spring 2020

Successfully Managing and Leading
Software Projects,

Blackboard Learn

25

Lecture 1

Content 1

Successfully Managing and Leading
Software Projects,

Questions

26

Successfully Managing and Leading
Software Projects,

The Better Way of Managing and Leading

Software Intensive Projects

Class 1

Lecture Slides

27

Source SEI

Successfully Managing and Leading
Software Projects,

Introductions and Expectations

• Participant Introductions

o Name

o Position and background

o Experience with software project management

• how long

• experience with other guides or standards

• Expectations

o What do you want to get out of this course

28

Source: DAU

Successfully Managing and Leading
Software Projects,

Topics

• Fundamental Shifts in Software Management &

Engineering

• Why Managing and Leading Software Projects Is

Difficult

• The Nature of Project Constraints

• A Workflow Model for Managing Software Projects

• Organizational Structures for Software Projects

• Organizing the Project Team

• Maintaining the Project Vision and the Product Vision

• Frameworks, Standards, and Guidelines

29

Successfully Managing and Leading
Software Projects,

Enabling Learning Objectives

o Motivation – We Need a Better Way!

o The main elements of software project
management

o The influence of project constraints

o Why managing and leading software projects is
difficult

o A workflow model for software projects

o The work products of software projects

o Organizational structures for software projects

o Organizing a software development team

o Maintaining the project vision and product goals

o Frameworks, standards, and guidelines

30

Successfully Managing and Leading
Software Projects,

Fundamental Shifts in Software Management & Engineering

Developers write code Models generate code AI/ML assists in generating models/code

Software release based on

milestones (typically 12 – 24

months)

Continuous integration and

continuous deployment (CI/CD)
Automated release-observe-refine

Collect data and evidence from

past projects to make

predictions

Moving beyond prediction to

determining causality

Feedback of data and results to re-train

models

Software and hardware must

work together

Increasing diversity of

languages, platforms, hardware

& systems must be made to

work together

Systems of people, policies, sensors,

software, hardware, etc., continuously

learn ways to work together

Developers do nearly everything

Developers determine

processes and rules and create

automation

Machines continually learn what to do to

achieve goals

Black box test for correctness Formal analysis of correctness
Mathematically verified enforcers

watch rest of system

Human in the loop

(humans invoke computers)

Humans on the loop

(humans monitor computers)

Humans out of the loop

(computers notify humans only when

needed)

As software and systems are increasingly becoming bigger, more complex, and intertwined,

software management and engineering and the roles people play are evolving in response.

Time

Successfully Managing and Leading
Software Projects,

• IEEE Standards

 16326 - Project Management Plan (PMP)

 12207 - Systems and software engineering —

Software life cycle processes
• Capability Maturity Model Integration (CMMI) Version 3

Highly Predictive Predictive Adaptive Highly Adaptive

PMBOK

Sixth Ed
SWX PMBOK

Fifth Ed

Accepted Standards and Process and

Development Frameworks

Workforce Frameworks
 IT BOK- Skills for the

Information Age (SFIA)

References- Building on Project Management Anchor Points

Systems Engineering of Software-Enabled Systems

Development &

Acquisition

Lifecycles

Managing and

Leading Software

Projects

Research

& Studies

Systems

Engineering of

Software-

Enabled Systems

Successfully Managing and Leading
Software Projects,

Assignments Due for Next Period

• Assignments:

1. Study Chapters 1 & 2 in course Text 1

2. Read and Prepare Comments on Article: A

Retrospective View of the Laws of Software

Engineering, Capers Jones, 2017

3. Answer questions: 1.1; 1.3; 1:17

33

• All assignments are to be turned in at the beginning of the

next class period.

• All articles should be accompanied with approximately a

one-page analysis (i.e. 50% on the content and 50% on

your view of the article).

Successfully Managing and Leading
Software Projects,

Why We Need a Better Way !

34Source SEI

Successfully Managing and Leading
Software Projects,

Discussion

Why do you think software-intensive projects are hard

to manage and lead?

35

Successfully Managing and Leading
Software Projects,

Seventeen Reasons Why Software-Intensive

Projects Are Hard to Manage and Lead?*

1. Software requirements often change during a software project as

knowledge is gained and the scope of the project and the product

emerge.

2. Requirements for new and modified software often influence, and

are influenced by, an organization’s business processes and the

workflow processes of employees.

3. Intellectual capital of software personnel is the primary capital asset

for software projects and software development organizations

because software is a direct product of human cognitive processes.

4. Communication and coordination within software teams and with

project stakeholders often lack clarity. Many of the tools and

techniques used in software engineering are intended to improve

communication and coordination.

*SWX PMBOK Fifth Ed

36

Successfully Managing and Leading
Software Projects,

Seventeen Reasons Why Software-Intensive

Projects Are Hard to Manage and Lead?*

5. Creation of software requires innovative problem solving to create

unique solutions. Most software projects develop unique products

because replication of existing software is a simple process, as

compared to replication of physical artifacts. Software projects are

more akin to research and development projects than to

construction or manufacturing projects.

6. Exhaustive testing of software is impractical because of the time

that would be required to test all logical paths and interfaces under

all combinations of input data and other input stimuli.

7. Software development often involves inclusion of different vendor

products and development of interfaces to other software; this may

result in integration and performance issues.

* SWX PMBOK Fifth Ed

37

Successfully Managing and Leading
Software Projects,

Seventeen Reasons Why Software-Intensive

Projects Are Hard to Manage and Lead?*

8. Software projects involve risk and uncertainty because they require

innovation, the product is intangible, and stakeholders may not

effectively articulate, or agree on, the needs to be satisfied by the

software product.

9. Initial planning and estimation for software projects is challenging

because they depend on requirements, which are often imprecise

and on historical data, which is often missing or inapplicable.

Preparation of accurate estimates is also challenging because the

efficiency and effectiveness of software developers is widely

variable.

10. Product complexity makes development and modification of

software challenging because of the enormous number of logical

paths within program modules combined with data values that

exercise the paths, and the combinations of interface details among

program modules.

* SWX PMBOK Fifth Ed
38

Successfully Managing and Leading
Software Projects,

Seventeen Reasons Why Software-Intensive Projects

Are Hard to Manage and Lead?*

11. Because most software is interconnected, information security

techniques are necessary. Software security is a large and

growing challenge.

12. Objective quantification and measurement of software quality is

difficult because of the intangible nature of software.

13. Software developers use processes, methods, and tools that are

constantly evolving and are frequently updated.

14. Software is often the element of a system that is changed when

functionality, behavior, or quality attributes must be changed.

15. A software product may be required to operate on a variety of

hardware platforms and infrastructure software

* SWX PMBOK Fifth Ed

39

Successfully Managing and Leading
Software Projects,

Seventeen Reasons Why Software-Intensive Projects

Are Hard to Manage and Lead?*

16. Executable software is not a standalone product. It is executed on

computing hardware and is often an element of a system consisting

of diverse hardware, other software, and manual procedures.

17. Platform technologies, infrastructure software, and vendor-supplied

software are frequently changed or updated, which can necessitate

changes to the software being developed.

* SWX PMBOK Fifth Ed

40

Successfully Managing and Leading
Software Projects,

Why We Need a Better Way

• Software is a part of the very fabric of civilization,

living in its interstitial spaces

– The complexity of software-intensive systems continues

to grow; this complexity impacts its users as well as the

stakeholders who develop, deploy, operate, and evolve

them

– There is a plethora of articles on the problems

associated with software systems

– We know a lot about classical project management

– Unfortunately we know very little about successfully

managing an leading software intensive projects

41

Successfully Managing and Leading
Software Projects,

What is a Project?

A project is characterized as follows:

• a one-time effort is planned

• starting and ending dates are prescribed

• a project team is assembled

• schedule and budget are allocated

• well-defined objectives are established

• roles are identified, responsibilities are assigned,

and authority is delegated

Software projects are temporary organizational units

42

Successfully Managing and Leading
Software Projects,

What is Management?

• Management is concerned with planning and

coordinating the work activities of others so

that they can achieve goals that cannot be

achieved by each individual acting alone

Synergy: the combined effect is greater than the

sum of the individual effects

43

Successfully Managing and Leading
Software Projects,

What is Software Project Management (SPM)?

Software Project Management (SPM) is the art and science

of

o planning and coordinating the work of software

developers and other personnel

o to develop and modify software artifacts using as

appropriate abstraction design techniques

o that are pleasing to users and customers

o that are developed and modified in an economical and

timely manner

o and that can be sustained/continuos engineered

efficiently and effectively

Abstraction: Software and Systems Engineering deal more than other forms

of engineering with ideas that reduce and factor out details so that one can

focus on a few concepts at a time

44

Successfully Managing and Leading
Software Projects,

Please Close Your Eyes

Successfully Managing and Leading
Software Projects,

Abstractions Can Lead to Unintended Perspectives

Why are multiple views important?

Successfully Managing and Leading
Software Projects,

The Ten Major Activities of Software Project Management

1. Planning, Organizing, Staffing and Estimating

o identify work activities

o determine organizational structure

o prepare a schedule

o prepare a budget

2. Measuring and Controlling Processes and Product

o requirements

o quality and productivity

o schedule and budget

o product evolution

3. Leading, Coordination and Communicating

o motivating / coaching / educating project members

o communicating with management, customers,

subcontractors, other projects

4. Managing Risk

o identifying and confronting potential problems

47

Successfully Managing and Leading
Software Projects,

Managing versus Leading

• Managing is concerned with the quantitative
aspects of SPM:

o Planning, organizing and estimating

o measuring and controlling

o quantitative risk management

• Leading is concerned with the qualitative
aspects of SPM:

o communicating and coordinating

o inspiring and maintaining morale

o qualitative risk management

An effective project manager is both a manager and a leader

48

Successfully Managing and Leading
Software Projects,

You cannot manage men

into battle. You manage

things; you lead people.

Grace Murray Hopper

“First Lady of Software”

Grace Brewster Murray Hopper; December 9, 1906 – January 1, 1992)

Successfully Managing and Leading
Software Projects,

Project Success Criteria

• The primary goal of software engineering is to

develop and modify software so that:

o the product is delivered on time & within budget

o the product satisfies technical requirements,

user needs, and customer expectations

o the product is easy to modify and maintain

o development milestones are achieved on time &

within budget

o staff morale is high throughout project

o work instills pride in the developers

Q1: What are your personal success criteria?

Q2: What are most organizations’ main success criteria?

Q3: What are most customers’ main success criteria?

50

Successfully Managing and Leading
Software Projects,

Project Manager’s Success Criteria

A project manager’s success criteria include, or should
include:

• delivery of an acceptable product on time and within
budget

o within the limits imposed by project constraints*

• maintaining good relations with customers, suppliers,
managers, and other organizational units

• maintaining a motivated project team

• advancing the career of each project member

• advancing his or her career

• Other criteria?

*A constraint is an externally imposed limitation

51

Successfully Managing and Leading
Software Projects,

Why Are Software Projects Difficult?

• According to Fred Brooks* software projects are difficult because

of accidental and essential difficulties

o accidental difficulties are caused by the current state of our

understanding

• of methods, tools, and techniques

• of the underlying technology base

o essential difficulties are caused by the inherent nature of

software

• invisibility - lack of physical properties

• complexity

• conformity

• changeability

* The Mythical Man-Month by Fred Brooks, Addison Wesley, 1995

52

Successfully Managing and Leading
Software Projects,

Example: Why IT Software-Intensive Projects

Are Hard to Manage and Lead?

complexity: Cyber Physical
Systems - Components

• Due to interaction of
components, number of
possible states grows.

• Hardware is complex but
we usually know that for a
known input, what to
expect output should be
given we are only looking
at the hardware

• For its size, software is
very complex compared to
even hardware.

Source SEI

Successfully Managing and Leading
Software Projects,

Complexity - Example

Loop < 20 times

The flowchart might correspond to a 100
LOC module with a single loop that may be
executed no more than 20 times.

There are approximately 1014 possible
paths that may be executed!

For any but the smallest programs,
complete path coverage for defect
detection is impractical.

Adapted from Pressman, R.S., Software Engineering: A Practitioner’s Approach,

Third Edition, McGraw Hil, 1992

Lehman Laws:

1. The Law of Continuing Change – programs must change to be useful

2. The Law of Increasing Complexity – programs that change become more

complex

Successfully Managing and Leading
Software Projects,

Additional Difficulties

• Additional reasons software projects are

difficult are:

o intellect-intensive, small team-oriented

nature of the work

o externally imposed constraints

• Software is developed by:

o teams of individuals

o engaged in closely coordinated

intellectual work activities

o to produce various written work products

55

Successfully Managing and Leading
Software Projects,

An Observation

• As Michael Jackson has observed, the entire description of

a software system or product is usually too complex for the

entire description to be written directly in a programming

language, so we must prepare different descriptions at

different levels of abstraction, and for different purposes*.

• Also, note that each of the work products listed on the

following slide is a document

o Software developers and software project managers

produce physical artifacts (e.g. code) and documents,

which may exist in printed or electronic form.

* M. Jackson, “Descriptions in Software Development,”

Lecture Notes in Computer Science, Springer Verlag GmbH, Volume 2460, 2002.

56

Successfully Managing and Leading
Software Projects,

Some Work Products of Software Projects

Document Content of the document

Project plan Roadmap for conducting the project

Status reports Visibility of progress, cost, schedule, and quality

Memos and meeting minutes Issues, problems, recommendations, resolutions

e-mail messages On-going communications

Operational requirements User needs, desires, and expectations

Technical specification Product features and quality attributes

Architectural design documents Components and interfaces – many different views

Detailed design specification Algorithms, data structures, and interface details of

individual modules

Source code Product implementation

Test plan Product validation criteria and test scenarios

Reference manual Product encyclopedia

Help messages Guidance for users

Installation instructions Guidance for operators

Release notes Known issues; hints and guidelines

Maintenance guide Guidance for maintainers

Successfully Managing and Leading
Software Projects,

Note

• Note that the work products generated by software

engineers exist in graphical, iconic, and textual forms

o software engineers do not design or fabricate

artifacts made of physical materials

o our work products are generated from our thought

processes

58

Successfully Managing and Leading
Software Projects,

A Simile

• A team that writes software together is like a team

that writes a book together

o the team may pursue a “plan-driven” approach

o or an “agile” approach

59

Successfully Managing and Leading
Software Projects,

Plan-Driven Development

• Plan-driven development involves:

o defining the product requirements

o developing an architectural structure for the

product

o allocating the work among teams

o measuring progress and making corrections

o refining and revising the work products as

necessary

• preferably in an iterative manner

60

Successfully Managing and Leading
Software Projects,

Agile Development

• When pursuing an agile approach, the team members
must:

o develop an understanding of the nature of the
desired product to be delivered,

o develop continuous, ongoing relationship with a
knowledgeable user representative

o establish a shared design metaphor,

o adopting a version of agile development, and

o determine the constraints on schedule, budget,
resources, and technology that must be observed.

Most successful software projects incorporate aspects of both plan-driven and agility

61

Successfully Managing and Leading
Software Projects,

Additional Difficulties

• Additional reasons software projects are
difficult are:

o intellect-intensive nature of the work

o externally imposed constraints

62

Successfully Managing and Leading
Software Projects,

Engineering Constraints

• Engineering is concerned with applying science
and technology to develop products for use by
society within the constraints of:

o product requirements: features and quality
attributes

o project scope: work activities to be
accomplished

o time: scheduled dates for progress

o resources: assets available to conduct a
project

o budget: money used to acquire resources

63

Successfully Managing and Leading
Software Projects,

Additional Constraints

• Additional limitations imposed on software projects
include:

o platform technology: software tools and
hardware/software base

o domain technology: the realm of the user domain

o process standards: ways of conducting work
activities

o scientific knowledge: solution methods

o business considerations: profit, stability, growth

o mission needs: safety and security of citizens

o ethical considerations: serving best interests of
humans and society

• Others?

64

Successfully Managing and Leading
Software Projects,

Useful Constraints and Inhibiting Constraints

• Useful constraints provide guidance:

o for example, well-defined requirements are the

basis for planning, estimating, and establishing

success criteria

• Inhibiting constraints inhibit the ability to achieve

success criteria:

o for example, excessive schedule pressure may

inhibit the ability to delivery a product of high

quality

65

Successfully Managing and Leading
Software Projects,

The Challenges of Software Project Management

• Some of the most difficult problems you will encounter
in managing software projects arise from establishing
and maintaining a balance among the constraints on
project scope, budget, resources, technology, and the
scheduled delivery date:

o scope: the work to be done,

o budget: the money to acquire resources,

o resources: the assets available to do the job,

o technology: methods and tools to be used, and

o delivery date: the date on which the system must
be ready for delivery.

66

Successfully Managing and Leading
Software Projects,

Topics

• Fundamental Shifts in Software Management &

Engineering

• Why Managing and Leading Software Projects Is

Difficult

• The Nature of Project Constraints

• A Workflow Model for Managing Software Projects

• Organizational Structures for Software Projects

• Organizing the Project Team

• Maintaining the Project Vision and the Product Vision

• Frameworks, Standards, and Guidelines

67

Successfully Managing and Leading
Software Projects,

Needs, Expectation

& Resources

Change Request

Requirements &

Constraints

Customer

Management

Policy Directives

& Constraints

Planning

&

Replanning

Estimating

Cost & Schedule

Project

Asset Library

Project Reports

Controlling

Activity

Definition

Project

Organization

Structure

Quantitative

Measurement

(Cost, schedule,

Product, Process)

Resource

Allocation

s

Constant, Monitoring & Assessment

Status & Effort Report

Development

Process

Verification

& Validation

Quality

Assurance

Configuration

Management

Subcontractor

Management

Other

Supporting

Process

Work

Product

Services

Customers

Customer Feedback

Problem Reports

Known & Unknown Risks

Known, Unknown, & Unknown, Unknown Risks

A Workflow Model for Software Projects

Environment

You are Here in the Front End of the Project – Note: Some of Work May Be Done Before Project is Officially Formed

Successfully Managing and Leading
Software Projects,

Some Elements of the Model

• Customers and managers

• Requirements

• Directives and constraints

• Planning and re-planning

• Estimating

• Identifying the work activities and work
assignments

• Conducting the work activities

• Measuring and reporting status

• Controlling the project

• Retaining status data

• Handling change requests and problem
reports

• Supporting processes
69

Successfully Managing and Leading
Software Projects,

Some Supporting Processes for Software Projects

Supporting Process Purpose

Configuration

Management

Change control; baseline management; product audits;

Status Reporting

Verification Determining the degree to which work products satisfy

the conditions placed on them by other work products

and work processes

Validation Determining the degree of fitness of work products for

their intended use in their intended environments

Quality Assurance 1. Assuring conformance of work processes and work

products to policies, plans, and procedures

2. Engineering-in quality over the life of the product

Documentation Preparation and updating of intermediate and deliverable

work products

Developer Training Maintaining adequate and appropriate skills

User and Operator

Training

Imparting skills needed to effectively use and operate

systems

Successfully Managing and Leading
Software Projects,

Eight Supporting Processes in

ISO & IEEE Standards 12207

• Documentation

• Configuration management

• Quality assurance

• Verification

• Validation

• Joint review

• Audit

• Problem resolution

71

Successfully Managing and Leading
Software Projects,

A Note on Terminology

• In many organizations the term “software quality
assurance (SQA)” is used to mean independent
testing

• In the 12207 standards quality assurance is
concerned with:

“providing adequate assurance that the software
products and processes in the project life cycle
conform to their specified requirements and adhere
to their established plans.”

• Testing is in the realm of Verification and Validation

o Independent testing should not be termed “QA” or
“SQA”

CMMI-DEV-v1.3 uses terminology similar to 12207

more later

72

Successfully Managing and Leading
Software Projects,

Chapter 1 Topics

• Fundamental Shifts in Software Management &

Engineering

• Why Managing and Leading Software Projects Is

Difficult

• The Nature of Project Constraints

• A Workflow Model for Managing Software Projects

• Organizational Structures for Software Projects

• Organizing the Project Team

• Maintaining the Project Vision and the Product Vision

• Frameworks, Standards, and Guidelines

73

Successfully Managing and Leading
Software Projects,

Organizational Structures

• Organizations that conduct engineering

projects, including software projects, are

typically organized in one of four ways:

o functional structure,

o project structure,

o matrix structure, or

o hybrid structure.

74

Successfully Managing and Leading
Software Projects,

A Process-Structured Functional Organization

Department

Manager

Requirements

Group

Design

Group

Implementation

Group

. . .

Group

75

Successfully Managing and Leading
Software Projects,

A Product-Structured Functional Organization

Department

Manager

User Interface

Group

Algorithms

Group

Data base

Group

. . .

Group

76

Successfully Managing and Leading
Software Projects,

A Project-Structured Organization

Department

Manager

Project #1 Project #2 Project #3 Project #n

77

Successfully Managing and Leading
Software Projects,

A Matrix-Structured Organization

Department

Manager

Project

Manager #2

Project

Manager #1

Project

Manager #m

Functional

Manager #1

Functional

Manager #2
Functional

Manager #3
Functional

Manager #4

Project

Manager #3

2

3

1

4

8

2

5

7

3

3

6

6 4

78

Successfully Managing and Leading
Software Projects,

The Organizational Continuum

Project

Functional

Matrix

Project

Coordinator

Project

Manager

0%

100%0%

100%

Functional

Emphasis

Project

Emphasis

Weak

Matrix

Strong

Matrix

Successfully Managing and Leading
Software Projects,

An Organizational Model for Software Projects

Project Manager

Team

Leader #1

Team

Leader#2

Team

Leader #3
V&V CM

Member

Member Member

Member

Software Architect

Customer

XX

. .

.

. .

.

Each team has 2 to 5 members plus a team leader

V&V: Verification and Validation

CM: Configuration Management

XX: other supporting processes

80

Successfully Managing and Leading
Software Projects,

A Note

• A complex system is composed of:

o hardware (computers and others)

o software (newly developed and reused, COTS)

o people (operators, maintainers)

• A software program may be one of a collection of

projects

o under the technical direction of a system

engineering team

81

Successfully Managing and Leading
Software Projects,

The System Engineering Team

• The responsibilities of systems engineers include:

o defining operational requirements,

o specifying system requirements,

o developing the system design,

o allocating system requirements to system components,

o integrating the system components as they become available,

o verifying that the system to be delivered is correct, complete,

and consistent with respect to its technical specifications, and

o validating operation of the system with its intended users in its

intended operational environment.

for “software only” projects the people who perform

these functions are termed “software system engineers”

82

Successfully Managing and Leading
Software Projects,

An Organizational Structure for Software Projects

Each team has 2 to 5 members plus a team leader

Project Manager

Team

Leader #1

Team

Leader#2

Team

Leader #3
V&V CM

Member

Member Member

Member

Software Architect

Customer

XX

.

V&V: Verification and Validation

CM: Configuration Management

XX: other supporting processes

83

System Engineer

Successfully Managing and Leading
Software Projects,

Chapter 1 Topics

• Fundamental Shifts in Software Management &

Engineering

• Why Managing and Leading Software Projects Is

Difficult

• The Nature of Project Constraints

• A Workflow Model for Managing Software Projects

• Organizational Structures for Software Projects

• Organizing the Project Team

• Maintaining the Project Vision and the Product Vision

• Frameworks, Standards, and Guidelines

84

Successfully Managing and Leading
Software Projects,

Maintaining the Project and Product Visions

• The project manager is the keeper of the process

vision

o which is documented in the project plan

• and is updated as the project evolves

• The system engineer/software architect is the keeper

of the product vision,

o which is documented in the requirements and

architectural design specifications

• and is updated as the product evolves

85

Successfully Managing and Leading
Software Projects,

Another Simile

• The project manager is like a movie producer and the
software architect to a movie director.

o The producer (project manager) has overall
responsibility for schedules, budgets, resources,
customer relations, and delivery of a satisfactory
product on time and within budget.

• The director (software architect) is responsible for the
content of the product.

Producer and director must work together to maintain and

constantly communicate the process vision and the product

vision to the cast of developers and supporting personnel as

well as other project stakeholders

86

Successfully Managing and Leading
Software Projects,

Chapter 1 Topics

• Fundamental Shifts in Software Management &

Engineering

• Why Managing and Leading Software Projects Is

Difficult

• The Nature of Project Constraints

• A Workflow Model for Managing Software Projects

• Organizational Structures for Software Projects

• Organizing the Project Team

• Maintaining the Project Vision and the Product Vision

• Frameworks, Standards, and Guidelines

87

Successfully Managing and Leading
Software Projects,

Frameworks, Standards, and Guidelines (1)

• A process framework is a generic process model that

can be tailored and adapted to fit the needs of

particular projects and organizations.

• An engineering standard is a codification of methods,

practices, and procedures that is usually developed

and endorsed by a professional society or

independent agency.

• Guidelines are pragmatic statements of practices that

have been found to be effective in many practical

situations.

88

Successfully Managing and Leading
Software Projects,

Frameworks, Standards, and Guidelines (2)

• Some well known frameworks, standards, and

guidelines for software engineering and the

associated URLs are:

o Capability Maturity Model® Integration for development

(CMMI-DEV-v1.3)

o 12207-2017 - ISO/IEC/IEEE Standard for Systems and

Software Engineering - Software Life Cycle Processes

o 16326-2009 - ISO/IEC/IEEE International Standard Systems

and Software Engineering--Life Cycle Processes--Project

Management

o Project Management Body of Knowledge (PMBOK®) – Sixth

Edition[www.pmibookstore.org]

89

Successfully Managing and Leading
Software Projects,

Terminal Learning Objectives for Module 1 (1)

• A project is a coordinated set of activities that occur within a specific

timeframe to achieve specific objectives

• The primary activities of software project management are planning and

estimating; measuring and controlling; leading, communicating, and

coordinating; and managing risk

• Software projects are inherently difficult because software is complex,

changeable, conformable, and invisible

• Software projects are conducted by teams of individuals who engage in

intellect-intensive teamwork

• Project constraints are limitations imposed by external agents on some

or all of the operational domain, operational requirements, product

requirements, project scope, budget, resources, completion date, and

platform technology

• A workflow model indicates the work activities and the flow of work

products among work activities in a software project

Successfully Managing and Leading
Software Projects,

Terminal Learning Objectives for Module 1 (2)

• The entire description of a software system or product is usually

too complex for the entire description to be written directly in a

programming language, so we must prepare different descriptions

at different levels of abstraction, and for different purposes

• Organizations that conduct software projects use functional,

project, weak matrix, and strong matrix structures

• Software projects organized in a hierarchical manner provide

well-defined work activities, roles, authorities, and

responsibilities at each level in the hierarchy; hierarchies can

expand and shrink to fit the needs of each project

• Requirements must be allocated and the design structured so that

the work of each small team can proceed concurrently with the

work of other teams

91

Successfully Managing and Leading
Software Projects,

Terminal Learning Objectives for Module 1 (3)

• The project manager maintains the project vision, as

documented in the project plan, and the software architect

maintains the product goals, as documented in the

requirements and architectural design

• A software process framework is a generic process model
that can be tailored and adapted to fit the needs of particular
projects and organizations.

• A software engineering standard is a codification of
methods, practices, and procedures, usually developed and
endorsed by a professional society or independent agency.

• Guidelines are pragmatic statements of practices that have
been found to be effective in many practical situations.

92

Successfully Managing and Leading
Software Projects,

Questions

93

