

CS 262: Introduction to Low-Level Programming

Course Syllabus - Fall 2020 (08/24/2020 – 12/16/2020)
3 credits

George Mason University
Department of Computer Science

Format: Asynchronous
Class Location: Online (Blackboard Collaborate Ultra)

Sections: 001, 002
Instructor: Prof. Ana Loreto Gonzalez
Email: loreto@gmu.edu
Office Hours: MW 10-11AM using Blackboard Collaborate Ultra

Sections: 004, 005, G01
Instructor: Prof. Ping Deng
Email: pideng@gmu.edu
Office Hours: MW 3-4PM using Blackboard Collaborate Ultra

Textbook
• Brian W. Kernighan and Dennis M. Ritchie,	The C Programming Language, 2nd ed.,

Prentice Hall, 1988

Complementary Books:
• Byron S. Gottfried,	Programming with C, 2nd ed., Schumm’s Outline, 1996 or the latest
• Peter Printz and Tony Crawford,	C in a Nutshell: A Desktop Quick Reference, 1st ed.,

O'Reilly', 2006
• David Griffiths and Dawn Griffiths,	Head First C, 1st ed., O'Reilly', 2012

Course Description

This course is intended to prepare students for topics in systems programming. It emphasizes
relevant concepts of the C programming language, as well as the use of main commands of the
Unix Operating System.

C is a high-level programing language that offers the programmer direct access to much of the
underlying hardware and direct access to some operating system services for programs running
under Unix. These features make C the preference language of choice for system programming.

Prerequisites: (CS 110* or 101*) and (CS 211 or 222) >> *May be taken concurrently

Course Outcomes

1. Be able to implement, test and debug a designed solution to a problem in a low-level
programming language, specifically the C programming language.

2. Demonstrate a good understanding of C language constructs such as pointers,
dynamic memory management, and address arithmetic.

3. Demonstrate a good understanding of C libraries for input and output, and the
interface between C programs and the UNIX operating system.

4. Demonstrate an ability to use UNIX tools for program development and debugging.

CS 262: Introduction to Low-Level Programming – Fall 2020

 Page 2 of 5

Course Topics

The course will cover the following topics in no particular order:

• C Types, Operators, and Expressions
• Basic I/O, Input and Output Libraries
• File I/O
• Control Flow
• Functions and Program Structure
• Strings
• Pointers and Arrays
• Dynamic memory allocation
• Structures
• Bitwise operations
• The Unix System Interface
• vi/vim
• Debugging using GDB and Valgrind
• Compiling, Linking, Makefiles, using multiple source files

Evaluation and Grading

Grade Distribution

• Lab assignments 20%
• Projects 30%
• Quizzes 15%
• Midterm exam 15%
• Final exam 20%

To receive a passing grade in this course, the average score for your two exams

MUST be at least 60% AND you must submit all projects and labs

Note: Lab attendance is not mandatory but has up to 2% bonus credit if attend at least 10 labs

Letter Grade Distribution

Your overall course score, S, will be the sum of these points.

S >= 98 A+
S >= 90 A
S >=88 B+
S >=80 B
S >=78 C+
S >=70 C
S >=60 D
S <60 F

CS 262: Introduction to Low-Level Programming – Fall 2020

 Page 3 of 5

Grading Elements Policies

• Lab assignments: Description for lab assignments will be posted on Blackboard.

Submissions must be through Blackboard by the due date. Labs are intended to clarify the
required aspects for lab assignments. During labs GTAs and UTAs will provide assistance
and give hints to develop your programs.

Late lab assignments will automatically be assessed a 50% penalty.

• Projects:		 Programming projects will be posted on Blackboard and student’s solutions must
be submitted on Blackboard by the assigned due date. 	If your program is incomplete, you
may still submit it but your code must run without obvious errors (even if all functionality
is not present). Notice your GTA relies on running your program as part of your grade
determination. Accordingly, any programming assignment that is submitted but does not
compile will receive no more than 25% credit. A programming assignment submission that
has major errors when it is run will receive no more than 50% credit.

Late projects will be penalized 10 points per day (incl. weekend days/holidays) for
the first five days past the due date. After that time, late projects will be penalized 5
points per day for the next five days. The maximum late penalty will be 75 points.

The cutoff for on-time submission is 11:59 pm on the due date

If your program isn't the way you'd like it to be when the deadline is near, you could submit it.
The system permits you to retrieve and resubmit your assignment until the due date, so you
may resubmit if you improve your program prior to the deadline. The last submission is the one
graded by your GTA. No resubmissions may be made after a project has been graded.

All projects and lab assignments must be submitted	no later than the last day of regular classes
for the semester in order to earn	a passing grade in the course	(unless previous arrangements
have been made with your instructor).

• Quizzes and Exams: All quizzes and exams must be taken on the scheduled date/time.

Passing this time, NO make-up of exams or quizzes are given unless previously arranged
with the instructor.

Important Information

• Class Communications: 	CS 262 will be using Piazza and Blackboard for most class

communications. You are responsible for any notifications or information posted on
Blackboard/Piazza either by your instructor, your GTA or the class UTA(s), and you will
need to check the systems regularly for such notices.
Individual communications with the professor/GTA/UTA may be done by email using your
GMU email account. When you email, please try to include your name, the class number
and the topic in the subject header.

CS 262: Introduction to Low-Level Programming – Fall 2020

 Page 4 of 5

• Special Accommodations:	If you are a student with a disability, please see your

instructor and contact the Office of Disability Services (ODS) at (703) 993-2474. All
academic accommodations	must	be arranged through the ODS: http://ods.gmu.edu/

• Honor Code Policies:	All students are expected to abide by the	GMU Honor Code. This
policy is rigorously enforced. All class-related assignments are considered individual
efforts unless explicitly expressed otherwise (in writing). Review the university honor
code and present any questions regarding the policies to instructor.

Cheating on any assignment will be prosecuted and result in a notification of the Honor
Committee as outlined in the GMU Honor Code. Sharing, collaboration, or looking at any code
related to programming assignments that is not your own is considered cheating.
See	Programming Polices	below.

The computer science department has an additional, more restrictive	CS Honor Code	that you
are also subject to. Make sure you read and familiarize yourself with these rules.

Programming Policies

(1) No sharing or discussion of code for assignments.	Unless specifically stated

otherwise, all assignments are individual assignments, not group assignments.
Students are expected to do their own work, not to share programs with each other, nor
copy programs from anyone else. However, you may offer limited assistance to your
fellow students regarding questions or misunderstandings on their programming
assignments. Suspected honor code violations are taken very seriously, and will be
reported to the Honor Committee. (See CS	Honor Code)

(2) No incorporation of code from any source external to the course.	You
may	not	incorporate code written by others.	Of course, you may freely use any code
provided as part of the project specifications, and you need not credit the
source. 	Working something out together with an instructor or GTA will not require
crediting the source.	

(3) Back up your program regularly.	You are expected to back up your program in
separate files as you get different pieces working. Failure to do this may result in your
getting a much lower grade on a program if last minute problems occur. (Accidently
deleting your program, having problems connecting, etc., will	not	be accepted as
excuses.)

(4) Keep an untouched copy of your final code submission. It is important that you don't
touch your programs once you have made your final submission. If there are any
submission problems, consideration for credit will only be given if it can be verified
that the programs were not changed after being submitted.

(5) Code must run on Mason gcc. Students may develop programs using any computer
system they have available. However, submitted programs must run under gcc
compiler available on Mason. Your documentation should clearly state which software
was used for compilation, and once makefiles are introduced, a makefile should be
included with each assignment submission.

